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ABSTRACT
Target detection is one of the more popular applications of hyperspectral remote sensing. To enhance the detection rate, it
is common to do preprocessing to reduce the effects of noise and other forms of undesired interference with the observed
spectral signatures. In current earth observing systems, in particular small satellite systems, data rate limitations can make
the utilization of sensors with high spectral dimensionality undesirable and even unobtainable.

In this paper, the effect of different methods for dimensionality reduction and noise removal has been observed on
multiple classical methods for signature matched target detection often used in hyperspectral imaging. The dimensionality
reduction differs from resampling in the sense that the original spectral range and resolution can be restored via a linear
transformation.

This paper suggests that by combining dimensionality reduction and target detection, the resulting data cube has a
reduced dimensionality and suppressed undesired effects. The ability to correctly detect spectral phenomena has improved
while also achieving reduce data volume. Combining dimensionality reduction and target detection can also reduce the
number of computational operations needed in later stages of processing, when operating on the projected space. The
observed effects are demonstrated by using simulated and real-world hyperspectral scenes. The real-world scenes are from
well-calibrated sensors e.g. AVIRIS, ROSIS, and Hyperion, of classified agricultural and urban areas. The simulated scene
is generated using the ASTER library.

1. INTRODUCTION
Recent advances in remote sensing enable hyperspectral data to be collected with systems that use considerably less phys-
ical volume and weight than more traditional remote sensing systems.1, 2 This new generation of electro-optic remote
sensing systems is not only significantly smaller, but also able to achieve the same or better performance as traditional
systems. Constellations of high-quality remote sensing satellites has become more attainable when combined with the
advances of smallsat platforms,3 i.e. satellite platforms that are of low mass and size. In this way, it has become possible to
achieve a higher level of robustness for current and future remote sensing earth observing programs, all at a lower economic
and temporal cost.2, 3

One of the major challenges for such smallsat remote sensing systems is the limitations in communication data rate
capabilities, especially so for hyperspectral remote sensing systems.3 In this paper, the effect of dimensionality reduction as
a method for compression, and in turn on target detection is investigated. The effectiveness of lossy compression algorithms
has been evaluated by comparing the restored scene with the original scene.4 This is limited in the sense that the original
scene cannot be void of noise or other unwanted artifacts from the sensor, which does not give a definitive answer to
whether the lossy compression algorithms reduce noise or degrades the information in the signal. To answer this question,
this paper investigates at the effect of dimensionality reduction on signature based target detection for hyperspectral remote
sensing, and uses the results as a basis for discussion. This approach does not quantify the ability to restore the original
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data, but rather quantify the effect of the lossy compression on signature based target detection, both through the F1-score5

for target detection performance and visibility for robustness.6

The data shows that a high compression ratio can be achieved by exploiting structures found in the first and second
statistical moments. Given the application of target detection, the projected subspace of the data provides for most cases an
improved performance with respect to both the F1-Score and the visibility. As the data can be analyzed in its compressed
state, this can in turn significantly reduce the number of operations required to perform further onboard processing in a
smallsat system, whilst at the same time having reduced the total data volume that needs to be stored and transmitted.

1.1 Notation
All hyperspectral images are inherently three dimensional cubes with two spatial dimensions and one spectral dimension.
However, in all the subsequent sections a two dimensional matrix representation of the hyperspectral data is used, and the
relationship is given in equation (1) and (2), where each xi, j, and subsequently xi, is a vector of the spectra with a sub-script
re-indexation from equation (2) to equation (3). Here the original data set, prior to any dimensionality reduction, is given
as Xo

XCube =


x1,1 x1,2 · · · x1,i
x2,1 x2,2 · · · x2,i

...
...

. . .
...

xj,1 xj,2 · · · xj,i

 (1)

XMatrix =
[
x1,1 · · · x1,i x2,1 · · · x2,i · · · xj,1 · · · xj,i

]
(2)

Xo =
[
x1, x2, x3, · · · , xi, · · · , xN

]
(3)

2. THEORY
This section briefly describes the methods and algorithms used in the analysis. In-depth description of the theory applied
can be found in the references.7

2.1 Dimensionality Reduction
In classification or target detection applications, high dimensional data such as a hyperspectral image can be used. The
high-dimensional data contains a higher number of observed variables than potential classes to classify or targets to detect
in the image. This is a source of variation and redundancy in hyperspectral images. Some of the information in the image
is thus redundant for analysis, due to this strong correlation. Dimensionality reduction is a common approach to handle
the high dimensionality in hyperspectral imaging. In the analysis that follows, four classic methods for dimensionality
reduction are explored and analyzed in the context of target detection.

2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a method to reduce the dimensionality by utilizing the correlation of different
variables in a set.8 Within PCA the principal components are ordered according to variance, such that the first components
carries more information with respect to the full data space than the later components. If the variables or spectral signal
under observation carry additive independent normally distributed noise, PCA is an optimal method for noise filtering.

The eigenvalues σ2 corresponding to the principal components are computed as follows:

m =
1
N

N

∑
i=1

xi

Σo =
1
N

XoXT
o −mmT

det(Σo−σ
2I) = 0

(4)



where Σo is the covariance matrix computed from Xo, I is an identity matrix with dimensions equal to the number of
spectral channels, and σ2 is an eigenvalue. Then, the corresponding unit eigenvectors VPCA are ordered according to the
magnitude of the eigenvalues, such that

ΣoVPCA = VPCAD (5)

where D is a diagonal matrix consisting of the eigenvalues, ordered according to the magnitude with the highest eigenvalues
as the first element, and VPCA is a unitary matrix consisting of the eigenvectors to fulfill Σov j = σ2

j v j. From this, the
transformed subspace can be represented with the columns of ZPCA as basis vectors, where the dimensionality reduction is
performed by selecting a subset of the eigenvectors related to the largest eigenvalues, in the following way

ZPCA = VT
PCAXo (6)

where Xo is, as defined in equation (3), a vector of a hyperspectral signal or a matrix of the observed data with pixels in
each column and spectral information in the rows.

2.1.2 Maximum Noise Factoring

Maximum Noise Factoring (MNF) is a dimensionality reduction method that accounts for the source of the noise. Whereas
PCA is only dependent on the variance in the data, MNF sorts the principal components based on the estimated signal to
noise ratio. The underlying assumption made in the MNF transform is that the noise is additive, but not normally distributed
white noise, expressed as

Σo = Σs +Σn (7)

where Σs is the covariance of the signal and Σn is the covariance of the noise. As the MNF seeks to maximize the
eigenvalues with respect to Signal to noise ratio and decorrelate the covariance matrix, it can be performed as a two-step
PCA. In the analysis, two different approaches for noise estimation were used. In equation (8), the noise vector set Xn is
computed by taking the difference between neighboring pixels in a spatial area of uniform spectral content,9 later denoted
as GMNF. In equation (9) the noise vector set Xn is computed by taking the difference between neighboring pixels in the
spectral dimension projected into the space of the spectral band in question,10 later denoted as BMNF.

Xn =
[
x1−x2, x2−x3, · · · , xN−1−xN

]
=
[
n̂1, n̂2, · · · , n̂N−1

]
(8)

XT
o = Y

Y(−k) =
[
y1, y2, · · · , yk−1, yk+1, · · · , yL

]
ñk = y(k)−Y(−k)

(
YT
(−k)Y(−k)

)−1YT
(−k)y(k)

XT
n =

[
ñ1, ñ2, · · · , ñL

]
∀k ∈ {1,2, · · · ,N}

(9)

L is the number of spectral channels, Xn is in turn used to compute the noise covariance matrix Σn from equation (10).
The singular value decomposition is used for numerical stability and reduced computational time for data sets with a higher
number of samples than variables.11 The singular value decomposition is given is this paper with matrices X = USVT ,
with S being a diagonal matrix with entries sorted according to the magnitude of the eigenvalue, V being an orthogonal
square matrix with dimensions equal to the number of spectral channels, and U being an orthogonal square matrix with
dimensions equal to the number of pixels. With Xo as the original data set and Xw as the noise-whitened data set, where
the the noise-whitening transformation with a whitening matrix expressed in equation (10) as UnS−1/2

n , yields the whitened
random vector Xw with unit diagonal covariance and zero mean, further expressed as follows

Σn = UnSnVT
n Xw = XoUnS−1/2

n = UwSwVT
w. (10)



From this, the transformation matrix VMNF can be expressed as

VMNF = UnS−1/2
n Vw. (11)

Hence, the transformed subspace can be represented as ZMNF , where the dimensionality reduction is performed by
selecting a subset of the singularvector corresponding to the largest singularvalue, in the following way

ZMNF = VT
MNF X0 (12)

where X is a vector or matrix to be projected into the subspace.

2.1.3 Independent Component Analysis

Independent Component Analysis (ICA) attempts to decompose a multivariate signal into independent non-Gaussian sig-
nals, i.e. a decomposition that provides statistical independence between the estimated components. Blind source separa-
tion, or ICA, of a mixed signal can separate the different signal sources well when the statistical independence assumption
is correct. Whilst PCA and MNF are computed based on first and second order statistical moments when estimating the
subspace, ICA utilizes higher order statistical moments. The underlying assumption can conversely be stated as follows:

ZICA = V−1
ICAXo (13)

where V−1
ICA is the separating matrix with the pre-selected number of components or assumed number of unique spectral

signatures, and ZICA is the transformed data set with values per pixel corresponding to the computed abundance of a derived
spectral signature. In V−1

ICA every row can be regarded as an independent signal, e.g. the spectral signature of a material. The
separating matrix V−1

ICA is computed iteratively over the entire data set. In this paper, Joint Approximation Diagonalization
of Eigen-matrices (JADE) is used to compute the components or independent signals, due to its convergence properties
when compared with other approaches.12 It should be noted that for computation of the components, as opposed to using
a pre-computed projection matrix from a relevant dataset, the JADE ICA approach can be more computationally demand-
ing than other approaches such as FastICA.12, 13 JADE ICA separates observed mixed signals into latent source signals,
i.e. underlying structures not directly observed, by exploiting kurtosis, the fourth order statistical moment, computed as
shown in equation (14). Kurtosis is a measure of how Gaussian the observed data distribution is, and is used for defining
independence between the source signals. Thus, JADE ICA seeks an orthogonal rotation of the observed mixed vectors to
estimate source vectors which possess high values of excess kurtosis. Kurtosis is defined as follows:

Kurt[X] = E
[(X−µ

σ

)2]
. (14)

2.2 Target Detection
In this paper, four popular classical signature based target detection algorithms are used in the analysis.7, 14 This subset
of target detection algorithms exploits a priori information about the desired target. There is an assumption that the target
signature is available and has been normalized to fit the scene. These target detection algorithms can also be considered as
linear processes that utilizes the information provided by first and second order statistics.2, 7

More advanced nonlinear target detection methods are able to exploit the statistical moments of a higher order than
traditional methods. This may in some cases yield better performance, but it demands a higher level of a priori knowledge
of a specific application, and more training data to be able to map the solution space. This makes it difficult to claim whether
a given target detection algorithm is superior to other alternatives.15 The use of classical target detection algorithms may
be sufficient for a given application, both in terms of robustness and target detection performance.



2.2.1 Spectral Angle Mapper

Spectral Angle Mapper (SAM) is a detection algorithm based on the following hypotheses:

H0 : x = b H1 : x = αs+b (15)

where x is a vector in the data set, b is a is the background and clutter noise, α is a parameter accounting for uncertainty
in the desired signal strength, and s is the desired signal. The SAM operator can be expressed as in equation (16) and a
derivation of the operator can be found in.7

rSAM(x) =
(sT x)2

(sT s)(xT x)
(16)

2.2.2 Adaptive Cosine Estimator

Adaptive Cosine Estimator (ACE) is a detection algorithm based on the following hypotheses:

H0 : x = b H1 : x = αs+βb (17)

where x is a vector in the data set, b is the background and clutter noise, s is the desired target signal, and α and β is
parameters accounting for uncertainty in the signal strengths. The ACE operator can be expressed as

rACE(x) =
(sT Σ−1

o x)2

(sT Σ
−1
o s)(xT Σ

−1
o x)

. (18)

2.2.3 Constrained Energy Minimization

Constrained Energy Minimization (CEM) is a detection algorithm based on minimization of the projected background
energy, where the energy can be expressed as in equation (19) leading to the expression found in equation (20), with the
solution found in equation (21). A derivation of the operator can be found in the references.7

E =
1
N

N

∑
i=1

hT xixi
T h = hT Roh Ro =

1
N

XoXT
o (19)

min
h

hT Roh s.t. hT s = 1 (20)

rCEM(x) =
(sT R−1

o x)2

(sT R−1
o s)

(21)

2.2.4 Orthogonal Subspace Projection

Orthogonal Subspace Projection (OSP) is a detection algorithm based on the hypotheses given in (22).

H0 : x = Bβ +n H1 : x = αs+Bβ +n (22)

where x is a vector in the data set, B represent the background subspace, β is the background basis coefficient vector, n is
independent normally distributed noise with zero mean, α is a parameter accounting for uncertainty in the desired signal
strength, and s is the desired target signal. The OSP operator can be expressed as in equation (23) and a derivation of the
operator can be found in the references.7 In this paper, the N-FINDR endmember extraction algorithm as described in16 is
used to estimate the background subspace B, to separate it from the desired signal. The desired signal is identified as the
spectral signature closest to the sought after signature based on SAM and removed to make up the background subspace B.

rOSP(x) = sT (I−B(BT B)−1BT )x = sT P⊥B x (23)



3. DATA SET DESCRIPTION
An overview of the real-world and simulated data sets used in the analysis is given. All real-world scenes are publicly
available.17 A short description of how the simulated data sets is provided. True color images for all the real world data
sets are given in Figure 1, with the image showing the distribution of endmembers.

Gray space represents unclassified pixels, but still used in model creation. In addition, all performance metrics are
computed on the full scene. For each scene used in the analysis Table 1 gives sensor, spatial extent of the pixels, the
number of classes in each set, the spectral range and resolution of each sensor. Furthermore, a short description of the
characteristics of each data set is given, and the different compression ratios with respect to dimensionality reduction are
given in Table 2. As training samples for all the dimensionality reduction methods and target detection methods, 30% of
the pixels in a given data set were randomly selected as training samples. No manually selected portion of the scene was
used to compute Xn, for either of the MNF transforms. The poorer noise estimation in the Pavia data set is due to the
in-homogeneity of the scene, compared to the more homogeneous scenes e.g. Salinas.

None of the pixels in the data sets presented here are explicitly mutually exclusive, i.e. there can be more than one
material in a given pixel.

Figure 1. True color images for all the real world data sets The accompanying image shows the distribution of endmembers. Grey areas
is unclassified pixels, which is still used in model creation and performance testing.



Data set Sensor Image format Endmembers Range (nm) Resolution (nm) Reference
Indian Pines AVIRIS 145x145 16 [400,2500] 10 18, 19

Salinas AVIRIS 512x217 16 [400,2500] 10 19

Pavia ROSIS-3 610x340 9 [430, 860] 4 20

KSC AVIRIS 512x614 13 [400,2500] 10 19

Botswana Hyperion 1476x256 14 [400, 2500] 10 21

Simulated Scenes ASTER 100x100 10 [400,925] 4 22

Table 1. The data sets used in the analysis and important parameters.

3.1 Indian Pines
The Indian Pines scene was gathered by the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) sensor with 224
spectral reflectance bands. The test site in North-western Indiana and consists of 145 by 145 pixels. The scene is a subset
of a larger one and contains two-thirds agriculture and one-third natural perennial vegetation e.g. forest.17, 18

3.2 Salinas
The Salinas scene was collected by the AVIRIS sensor over Salinas Valley, California. The scene has a spatial resolution
of 3.7-meter pixels, which can be considered a high spatial resolution. The area consists of 512 by 217 pixels and includes
vegetables, bare soils, and vineyard fields.17, 19

3.3 Pavia Centre
The Pavia Centre Scene is acquired by Reflective Optics System Imaging Spectrometer (ROSIS) during a flight campaign
over Pavia in northern Italy. The scene has a spatial resolution of 1.3-meter pixels, and 102 of the 115 spectral reflectance
bands in the wavelength range of 430nm to 860nm are made available in the data set. The other bands were removed due
to high absorption in the atmosphere.17, 20

3.4 Kennedy Space Center
The Kennedy Space Centre Scene (KSC) is a site in Florida. The scene has a spatial resolution of 18-meter pixels. The
publicly available data set has removed some bands to mitigate the effects of bad detectors, calibration errors, and other
anomalies. The subset consists of 176 of the 224 bands, and the classified pixels provided represents various land cover
types that occur.17, 19

3.5 Botswana
The Botswana scene is acquired using Hyperion, a payload on the NASA EO-1 satellite. The acquired scene is from the
Okavango Delta. The Hyperion sensor on EO-1 acquires had a spatial resolution of 30-meter pixels, and 224 spectral
reflectance bands originally. The publicly available data set has removed bands to mitigate the effects of bad detectors,
calibration errors, and other anomalies, and the remaining subset consists of 145 of the 224 bands available.17, 21

Data set \Components 50 45 40 35 30 25 20 15 10 5
Indian Pines 4.48 4.98 5.60 6.40 7.50 8.96 11.20 14.93 22.40 44.80
Salinas 4.48 4.98 5.60 6.40 7.50 8.96 11.20 14.93 22.40 44.80
Pavia 2.06 2.29 2.58 2.94 3.43 4.12 5.15 6.87 10.30 20.60
KSC 3.52 3.91 4.40 5.03 5.87 7.04 8.80 11.73 17.60 35.20
Botswana 2.90 3.22 3.63 4.14 4.83 5.80 7.25 9.67 14.50 29.00
Simulated Scenes 2.40 2.67 3.00 3.43 4.00 4.80 6.00 8.00 12.00 24.00

Table 2. Compression ratios for different number of components after dimensionality reduction. The compression ratio is only dependent
on number of components. Computed as CR = spectral channels / components



3.6 Simulated Synthetic Hyperspectral Scenes
The ASTER spectral library22 was used as a basis for the spectral signatures in the simulated scene. From the spectral
library 10 spectral signatures were selected to make up the different synthetically generated images. The spatial scene
was created using Hyperspectral Imagery Synthesis toolbox,23 using the Matern covariance function with θ1 = 0.5 and
θ2 = 0.5, and the spectral signatures to generate a noise free images with a reasonable spatial distribution of the materials.
10 different synthetic scenes were generated and used to get the average performance statistics.

Noise is added to the synthetic scenes to simulate undesired effects and artifacts according to the following relation-
ship10

yi = xi +ni (24)

Where xi is the spectral signature taken from the ASTER spectral library and ni is subject to

SNR≡ 10log10
E[xT

i xi]

E[nT
i ni]

(25)

Where the SNR is set to 50 and the variance of the noise signal ni, as a function of spectral channel i, is given as

σ
2
i = σ

2 e
− (i−L/2)2

2η2

∑
L
j=1 e

− ( j−L/2)2

2η2

(26)

Where L is the number of spectral channels, which gives a σ2 ≈ 9.73×10−07 and a σi as shown in Figure 9, with η = 18.
Thus the generated noise signal have different characteristics for different wavelengths, making it colored noise rather than
white noise.

4. METHODS
The analysis performed in this paper differs from earlier comparisons of dimensionality reduction and target detection
performance.4, 6, 14, 24 Rather than using the receiver operating characteristic (ROC) curve5 to determine the performance,
a combination of the F1-score5 and visibility6 is used.

The original data sets17 has not been processed prior to dimensionality reduction or target detection. Earlier publi-
cations19, 25 have stated that it is not necessary to calibrate scenes captured with AVIRIS to reflectance before applying
hyperspectral processing methods, due to the high SNR of the sensor and a relatively flat quantum efficiency function i.e.
a similar sensitivity over the captured electromagnetic spectrum. Following this approach, the combination of DR and
TD presented in this paper are trained on radiance spectra and operate directly on the measured radiance for each pixel
in a given scene or data set. The same approach is used for the scenes acquired from Hyperion and ROSIS, and for the
simulated scene. The scope of this paper does not include the effects of atmospheric compensation, as this is not a part of
the discussed level of data processing.

In the analysis of the real-world scenes, the dominating endmember of a pixel is set as ground truth. Thus it is not
accounted for pixels that were not mutually exclusive i.e. consisting of more than a single endmember. This ground truth
is used as a true positive for the signature sought after, whereas other pixels are marked as a true negative. The mixture
relationship information of each pixel was not available from the real-world data sets17 used in the analysis. As a result,
only one endmember is associated with a single pixel.



4.1 Performance Metrics
In this paper, the effects of dimensionality reduction on signature based target detection for hyperspectral imaging are
investigated. Traditionally, SNR and ROC have been used as a performance metrics in dimensionality reduction and target
detection, respectively. This is a suitable approach when investigating a specific case.

The ROC is suitable to determine the optimal threshold for a specific application, but the different ROC curves for
different endmembers are not suitable when looking at the average performance for several endmembers in a given scene,
due to the curve not necessarily following the same trajectory for comparing cases. ROC is ill-suited when the number of
cases grows large, and the analysis given here investigate more than 2000 such cases.

SNR measures the level of restoration to the original data, which will be contaminated by noise. A lower SNR score
can be due to loss of information carrying data or removal of sensor artifacts and other undesired effects, but the exact
source of the lower SNR score is often unclear. Some earlier work4 adds noise to the scene to control that variable, but this
does not solve the issue of determining the effect on the original noise.

To circumvent the limitations of SNR and ROC, it is proposed to take into consideration the complete chain, i.e. lossy
compressing the data and performing exploitative analysis on the compressed image, in order to determine the performance.
The analysis attempts to show how well the combination of dimensionality reduction and target detection performs and
how how robust the performance is on the average case for different scenes and cases using the F1-score and Visibility.

The analysis will determine the robustness and performance on the average case for different scenes using the F1-score
and Visibility. The target detection problem can be regarded as a binary classification problem, so the F1-score5 is used as
a measure of the performance of a given algorithm. The F1-score is calculated as

F1 = 2× precision× recall
precision+ recall

= 2× PPV×TPR
PPV+TPR

(27)

where precision or positive predictive value (PPV) is the number of true positives divided by the sum of all positives,
and recall or true positive rate (TPR) is the number of true positives divided by the sum of the true positives and the false
negatives. This relationship is common to use in binary classification, but not as common to use in the hyperspectral remote
sensing domain. In the analysis the optimal F1-score is chosen, i.e. the highest resulting F1-score for all possible threshold
values.

Visibility,6 a measure of robustness for target detection algorithms, is also computed. A higher separability between
target and background gives an easier to define detection threshold, and by extension improved suppression of undesirable
false alarms i.e. a higher level of robustness. The evaluation metric visibility used as a measure of separability is given as

vis =
|T̄t − T̄b|

max(T )−min(T )
. (28)

where T̄t is the average response value or probability of target for target pixels, T̄b is the average response value or proba-
bility of target for non-target pixels, max(T ) and min(T ) are the maximum and minimum probability of target in the scene,
normalizing the visibility value. The maximum score of visibility is 1, and the lowest score is 0. By including visibility
results, the scenarios where the F1-score is high for a very narrow set of possible thresholds are avoided.

5. RESULTS
Results from the real world data are given in section 5.1, focusing on the aforementioned performance metrics. The simu-
lated data is given in section 5.2 showcases the restoration properties in terms of SNR, and the degradation of computing
the DR transformation matrices from a subset of data.

5.1 Results From Real World Data
The subsequent plots give the averages for the F1-score and visibility, across all available endmembers. Averages for each
DR method per scene is given in Figures 4, 5, 6 and 7. Averages across all scenes are given in Figure 2. For all the figures
the results for ACE is given in blue, CEM in red, OSP in yellow, and SAM in purple. Figure 3 is a more visual example of
how the dimensionality reduction can affect the performance in terms of F1-score and visibility.
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Figure 2. Averages across all endmembers for all scenes for all DR transforms.
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Figure 4. Average performance for all endmembers per scene using the PCA transform.
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Figure 5. Average performance per scene using the MNF transform with noise estimation given in equation (8).
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Figure 6. Average performance per scene using the MNF transform with noise estimation given in equation (9).
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Figure 7. Average performance for all endmembers per scene using the ICA transform.



5.2 Results From Simulated Data
Figure 8 gives the restoration performance in terms of actual SNR of the data before noise is applied. That is, the SNR
of the data when compared to the spectral signatures of the synthetically generated image before adding noise and the
data re-projected back to the original space via the transformation matrix, with the number of components used in the
transformation matrix given along the x-axis. In addition a comparison of the restoration performance on the full data set
using components computed using all the available data and 30% randomly sampled pixels is given in Figure 8.

Figure 9 gives the noise characteristics of the noise applied in the simulated data, both in terms of standard deviation
as a function of wavelength and a randomly selected noise vector.
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6. DISCUSSION AND CONCLUSION
The target detection F1-score on average tend to be lower when going from the full space to 50 components, as seen in
Figure 2 . On average, the number of classes in the real-world data sets is 13, and when accounting for unclassified areas,
the virtual dimensionality10 i.e. the number of unique materials, in the real-world data sets should exceed 10 or 15. In
section 5.1 the effect of this can be seen in the decreased F1-score when using less components than the assumed virtual
dimensionality. Reducing the number of components further from 50 does not seem to affect the F1-score significantly up
until the assumed virtual dimensionality is reached.

As seen in Figure 2 the data can be analyzed in the subspace without significant loss in terms of target detection
visibility on average, and in some cases the visibility tend to increase with the reduced number of components. The overall
visibility performance found for the ACE detector corresponds well with the favorable results found in other publications
comparing detection algorithms.6, 14, 15, 24, 26

Both GMNF and BMNF perform well on the Salinas scene, where the assumption of homogeneous areas are well met,
as seen in Figure 5 and 6. When compared to their respective results for the heterogeneous KSC scene, the performance
decreases. An example of good case for the BMNF transform is given in Figure 3. This indicates that a more suitable noise
model can improve both the detection rate and visibility of a given target or application. An inaccurate noise model for the
data can degrade the performance. However, a non-ideal noise estimation does not make the overall performance degrade
very significantly. From the average statistics per scene, it is evident that when the assumptions made to create the DR
model are erroneous, a more simplistic approach e.g. PCA, seen in Figure 4, is just as suitable if not more suitable than the
more complex dimensionality reduction methods in terms of target detection in the subspace. The more complex JADE
ICA method, seen in Figure 7, did not yield a favorable performance when compared to the aforementioned PCA or MNF.
However, as seen in Figure 9 the ICA and BMNF transform are able to restore the true signal in the synthetic simulated
data better than PCA. On average ICA and BMNF is able to remove noise when the number of components used are more
than or equal to 10, the virtual dimensionality that the number of classes used in the synthetization would suggest.

The simplicity of implementation should also be taken into consideration. For the dimensionality reduction methods
surveyed, the JADE ICA transform is by far the most complex and computationally demanding, whilst the PCA is the
simplest. The MNF transforms could be regarded as a double PCA, a whitening step, and derivation of components. The
most computationally demanding and complex of the surveyed target detection algorithms is the OSP detector, which
gives relatively poor results. The ACE and CEM detector are of similar complexity and give similar results, but the ACE
detector tends to be more robust in terms of visibility. Lastly, the SAM detector is the simplest detector and gives especially
promising results when combined with the GMNF transform.

The reduced performance seen in Figure 9, shows that there will be a negligible change in restoration performance
when computing the DR transformation matrix using only 30 percent of the available data as opposed to all the available
data in terms of SNR. Thus, a transformation matrix computed with only 30 percent of the data should still be able to yield
a good analysis of the scene, both in terms of restoration to an original noise reduced scene, and in terms of target detection
performance in the subspace. As computing the DR transformation matrix can be very computationally expensive, this is
a promising result showing data it is not necessarily much to gain form using all the available data. This result has two
potential pathways for remote sensing smallsats; if the transformation matrix is computed on-board it is not needed to
account for all the available data, and the performance decrease from using a pre-computed transformation matrix can in
some cases be negligible i.e. if the a priori assumptions is a good representation of the scene.

All the discussed spectral dimensionality reduction methods give a compression ratio than can be easily computed, as
shown in Table 2. The spectral dimensionality reduction can conducted as a preliminary compression step prior to lossless
compression methods e.g. JPEG2000, CCSDS123.27 The information lost in the dimensionality reduction will consist of
noise in the statistical sense, as seen in Figure 8, and later lossless compression stages can ensure a lower total data volume
for the resulting data cube.

If the DR transformation matrix is computed based on what is expected, rather than the whole scene, this could save
both time and power for a given remote sensing smallsat system. The change in performance seen in this analysis when
using only 30 percent of the scene to compute the DR transformation matrix is negligible. How well the DR transformation
would be able to project a given scene will be dependent on the specific application, but the results given here indicate that
the change in performance on average could in many applications be acceptable, and in some cases beneficial.



6.1 Future Work
An adaptive approach to statistically estimate an optimal number of components used for dimensionality reduction7, 10

could be beneficial to investigate. With such an approach the number of components selected does not need to be dependent
on a satellite operators’ input, but rather the statistical relationships in the data. It is currently not investigated if the state-of-
the-art methods used to estimate an optimal number of components i.e. virtual dimensionality for dimensionality reduction
are optimal with respect to the performance metrics given in this paper.

In the work presented here the noise model for the MNF DR methods is computed on a per-pixel basis, thus having the
underlying assumption that all pixels will exhibit comparable noise characteristics. For many electro-optical systems this
is an erroneous assumption. A better noise model, based on a sensor model and accounting for the different sensitivities of
the focal plane array, as opposed to a per scene model or per pixel model, could make the MNF DR transformation matrix
further suppress undesired noise or other artifacts from the data.

As it is possible to conduct analysis or data exploration in the subspace, it should be investigated how an application
specific analysis is affected by being performed in the subspace. Performing an analysis in the subspace could save the
number of operations needed, and thus reducing the computational strain, potentially increasing the throughput as an edge
computing agent, such as smallsats for Remote Sensing.
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