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Abstract—Hyperspectral images obtained by imaging spec-
trometer contain a vast amount of data which require techniques
such as target detection to extract useful information. This
article presents an implementation of the target detection method
Adaptive Cosine Estimator (ACE) for hyperspectral images.
The algorithm is implemented as hardware-software partitioned
system on Zynq-7000 development platform. The computationally
intensive operations are accelerated on FPGA with the speed-
up factor of 28.54. The timing analysis presents results for the
partitioned system as well as for the software implementation
on Zynq processing system used for comparison. The detection
performance of the implemented algorithm is tested and verified
using publicly available hyperspectral scenes with ground truth
data.

Index Terms—hyperspectral imaging, target detection, Adap-
tive Cosine Estimator (ACE), FPGA

I. INTRODUCTION

Hyperspectral imaging combines digital imaging and spec-
trometry; its main goal is capturing and processing of images
consisting of many spectral components. As each object has
its own spectral signature defined by varying reflectance
as a function of wavelength, it is essential to measure the
distribution of electromagnetic radiation in certain spectral
bands. Opposed to typical true color imaging which is ad-
justed to human spectral sensitivity, hyperspectral imaging
can also include abundance of wavelengths outside the visible
spectrum. In satellite remote sensing applications, the data
obtained from the imaging spectrometer provides significant
information about the spectral characteristics of surfaces and
materials of the Earth [1].

The data from the hyperspectral camera can be represented
as a spectral cube, consisting of two spatial and one spectral
axis. Therefore, a pixel in a hyperspectral cube is an array
of captured spectral intensities for certain spatial coordinates.
Depending on the underlying architecture, the cube is usually
stored and accessed in BSQ, BIP or BIL format [2]. It is
also useful to plot spectra in the spectral space, where each
of the spectral bands can be considered as one dimension
in N-dimensional space. Therefore, the point (or vector) in
spectral space actually represents one spectrum. Since all
materials exhibit some variability in their reflectance spectra,
it is expected that a particular material will be empirically
characterized as a cloud of points in spectral space.

The increasing amount of spatio-spectral data obtained by
modern hyperspectral imagers has contributed to creating
new challenges in hyperspectral data processing, especially in
scenarios which require real-time operation [3]. Considering
satellite hyperspectral missions, another important issue is the
constrained down-link bandwidth from a satellite to the ground
stations [4]. To fulfill this, intensive on-board processing
performed on powerful platforms can be used. The systems
with FPGAs have become an integral part of satellite remote
sensing missions [5], characterized by low power consump-
tion, inherent reconfigurability, high parallelization capabilities
and commercial availability. The on-board hyperspectral data
processing tasks are usually pipelined, consisting mainly of
the following stages: binning, optical and sensor corrections,
radiometric corrections, geo-referencing and registration, mo-
tion blur correction, super-resolution, atmospheric correction
and dimensionality reduction, etc. The reduced data cube can
then be processed by a target detection system.

A number of target detection algorithms, such as constrained
energy minimization (CEM) [6], adaptive cosine estimator
(ACE) [7] and spectral angle mapper (SAM) [1] have been
widely used for hyperspectral images. Target detection is
involved in many civilian and military applications [8], such
as detection of vehicles, infrastructure, vegetation, pollution
or harmful algae species in oceans. As such, the objects of
interest can be scarcely populated in the scene or constitute a
significant portion of the image [1]. The spectral signature of
the target is required for mentioned algorithms, and it can be
obtained from a spectral library or extracted from the scene
for testing purposes.

The remainder of the paper is organized as follows. Section
II describes target detection algorithms as well as metrics
used to estimate their detection performance. In section III,
analysis of detection performance of considered algorithms
for FPGA implementation is briefly explained. Section IV
describes hardware-software codesigned implementation of
modified Adaptive Cosine Estimator (ACE) on ZedBoard
Zynq-7000 System-on-Chip. Section V provides analysis of
the proposed FPGA-based implementation using hyperspectral
scenes with provided ground truth data. Finally, section VI
concludes with guidelines for future development.



II. TARGET DETECTION ALGORITHMS

The objective of target detection algorithms is to find an
object of interest in the hyperspectral image. The algorithms
inspected in this paper are based on the statistical approach,
where spectral reflectance features are exploited to identify
the target. A typical target detection system consists of target
detection algorithm and threshold selection system, as shown
in Fig. 1.

Fig. 1. Hyperspectral target detection system, adapted from [8].

The target detection algorithm maps input pixel vector x
onto a scalar value y = D(x), where y is called detection
statistic. In other words, the target detection algorithm provides
the system with a numerical value which is related to the
probability of the inspected pixel to be a designated target.
Afterwards, the detection statistic y is compared to a threshold
value η in order to determine if the input pixel contains
target signature. The threshold provided by threshold selection
system is based on the estimated background image data. The
optimum threshold is set so that a significant amount of present
targets are detected and the false alarm rate is kept below a
certain value. Threshold selection system is out of scope of
this paper.

In statistical signal processing, target detection is regarded
as binary hypothesis testing between a null and alternative
hypothesis. Null hypothesis H0 asserts that the pixel being
tested is not a target, whereas the alternative hypothesis H1

asserts the observed pixel as target. Modelling the signals
under both hypothesis is characteristic for each target detec-
tion algorithm. A number of target detection algorithms are
selected for further analysis.

A. Spectral Angle Mapper

The detection problem can be presented as follows:

H0 : x = b
H1 : x = αs + b

(1)

where b is background clutter and noise, s is the known target
vector, and α represents a parameter influenced by illumination
and sub-pixel mixing. In the case of the random, zero-mean

and normally distributed background b, the spectral angle
mapper [1] is defined as:

DSAM (x) =
(sT x)2

(sT s)(xT x)
. (2)

An equivalent detection statistic is given as:

DSAM (x) = − cos−1 sT x√
(sT s)(xT x)

(3)

which represents an angle between a reference spectrum and
a pixel under test [1].

B. Constrained Energy Minimization

The target detection algorithm can also be designed as a FIR
linear filter h = [h1, h2, ..., hK ]T [6] with detection statistic
given as:

D(x) = hT x. (4)

The vector h is optimized so that the detection statistic
better separates the background clutter and the target. The
optimization is performed by minimizing the background
energy under the following constraint:

min(hT Rh) subject to hT s = 1 (5)

where R is the sample correlation matrix. The resulting
detection statistic of constrained energy minimization is then
given as:

DCEM (x) =
sT R−1x
sT R−1s

. (6)

C. Adaptive Cosine Estimator

A model of the detection hypotheses given as:

H0 : x = βb
H1 : x = αs + βb

(7)

leads to the Adaptive Cosine Estimator (ACE) [7], where the
parameter β is the newly introduced scaling factor of the
combination of noise and background clutter b ∼ N(µ, σ).
The detector is characterized by the following equation:

DACE(x) =
(sTΣ−1x)2

(sTΣ−1s)(xTΣ−1x)
(8)

where all factors are mean centered and the covariance matrix
Σ can be estimated from the sampled image data.

To satisfy real-time performance requirements and to ob-
viate the need for mean centering of the hyperspectral data,
an adaptation of ACE algorithm is proposed. The adaptation
consists of replacement of the covariance matrix with the
correlation matrix as follows:

DACE−R(x) =
(sT R−1x)2

(sT R−1s)(xT R−1x)
, (9)

where the correlation matrix R is estimated from the given
dataset or its subset.
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D. Target Detection Algorithm Performance Metrics

In order to choose the algorithm to implement and later
verify the implementation, performance of the target detection
algorithms is evaluated using the Matthews correlation coef-
ficient (MCC) and visibility metric [9]. The performance of
the algorithm is usually visualized using a confusion matrix
that contains the number of true positives, true negatives, false
positives and false negatives. True positives represent correctly
detected targets, while false negatives are present targets which
are not detected by the algorithm. On the other side, some
pixels might be regarded as targets even if they are part of the
background which belongs to false positives count (Fig. 1).
In contrast with that, true negatives are correctly classified
background pixels.

1) MCC metric: MCC metric is defined as:

MCC =
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(10)

where tp are true positive, tn are true negative, fp are false
positive and fn are false negative counts. MCC score is a value
in range from −1 to 1, where MCC = 1 means successful
detection of all hyperspectral targets without false positives or
negatives by target detection algorithm for a given threshold.
On the other side, MCC = −1 indicates that the algorithm
always gives the opposite class in case of binary classification.
This metric involves all four quadrants of the confusion matrix.

2) Visibility metric: The robustness of an algorithm is
evaluated using the visibility metric, which is a measure of the
algorithm’s ability to separate background clutter and target.
It is given as:

V isibility =
| Tt − Tb |

Tmax − Tmin
(11)

where Tt is the average detection statistic for target pixels,
and Tb is the average detection statistic for non-target pixels
based on the ground truth data. Factors Tmax and Tmin are
the maximum and minimum evaluated detection statistics in
the scene for a given algorithm. The best and the maximum
score of visibility is 1, and the lowest score is 0.

III. ANALYSIS AND ADAPTATION OF ALGORITHMS

The algorithms are tested on two hyperspectral datasets,
namely, Pavia University scene and Salinas scene, which are
publicly available on [10]. The testing of each algorithm is
performed on full image dimensionality (all spectral bands),
as well as in pipeline with dimensionality reduction technique -
Principal component analysis (PCA). For Pavia scene, Painted
Metal sheets and Meadows signatures are used as target signa-
tures, while tests on Salinas scene are performed using Lettuce
romaine 4th and 5th week signatures. For testing purposes,
the thresholds are generated from a linearly spaced array with
values between maximum and minimum detection statistic for
a given scene and corresponding spectral signature. Thus, the
MCC scores are obtained as the maximum achievable value
over a range of thresholds.

(a) Pavia scene, average maximum MCC and visibility score for Painted Metal
sheets and Meadows endmembers

(b) Salinas scene, average maximum MCC and visibility score for Lettuce
romaine 4th and 5th week endmembers

Fig. 2. MCC and visibility scores for Pavia and Salinas datasets

The results for ACE, ACE-R, CEM and SAM algorithms for
both scenes are shown in Fig. 2. Although the SAM algorithm
shows good performance, it is characterized by low visibility.
This makes the algorithm non-robust and shows its inability
to separate background clutter from the possible targets. The
CEM algorithm shows slightly lower MCC and visibility
score over almost all scenes. Finally, it can be observed that
the adapted ACE-R algorithm has the same performance or
outperforms CEM, ACE and SAM algorithms. The targets
are extracted from the provided scenes and especially ACE(-
R) algorithm performs well in these conditions, which is
consistent with the literature [1]. In particular, ACE-R proves
to have high both MCC score and visibility on the used
datasets.

Target detection with dimensionality reduction by PCA is
also performed on Pavia and Salinas scenes. After the testing,
it can be concluded that lowering the number of dimensions
does not drastically degrade the performance metric values. In
certain cases such as Salinas scene, MCC and visibility scores
for ACE and ACE-R algorithms are improved. One of the
reasons for the improvement can be found in elimination of the
noise in discarded dimensions. Compared to full image dimen-
sionality, dimensionality reduction shows advantages in both
substantially shorter computing time as well as improvement
of the performance scores for certain algorithms and scenes.
Based on the analysis, ACE-R is chosen to be implemented
on an FPGA-based HW/SW partitioned system.
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IV. IMPLEMENTATION OF THE TARGET DETECTION CORE

In this paper, on-board target detection system for hyper-
spectral images is prototyped on ZedBoard. This board con-
tains Zynq-7000 System-on-Chip consisting of processing sys-
tem (PS) with ARM Cortex-A9 CPU and programmable logic
(PL). The sensor data is stored in DDR3 memory, which can be
accessed by both PS and PL of Zynq SoC. The programmable
logic can communicate directly with DDR memory through
AXI interface and AXI Direct Memory Access (DMA) [11].
As a step towards the full FPGA implementation, HW/SW
codesign implementation of ACE-R target detection algorithm
has been proposed. The overview of the system is shown in
Fig. 3.

Fig. 3. System design of target detection accelerator

The operations of the algorithm are partitioned on the
heterogeneous platform between processing system and pro-
grammable logic with a special consideration of background
estimation. Since the correlation matrix can be estimated
from the obtained image or already known from the previous
runs, the correlation matrix and its inversion are computed in
software and transferred to the hardware accelerator for the
further algorithm steps. The computationally intensive matrix
and vector operations such as dot product are then performed
in hardware.

The block diagram of the implemented FPGA accelerator
is shown in Fig. 4. The accelerator contains three pipelined
HW stages. Initially, the inverted correlation matrix R−1 is
uploaded to the BRAM and serves during the whole algorithm
execution.

In the first stage, each spectral component is streamed from
DDR through DMA via AXI interfaces, and fed to the dot
product (DP) modules which perform the following operation:

[
Li(λ1) Li(λ2) . . . Li(λK)

]
·


r11 r12 . . . r1K
r21 r22 . . . r2K

...
...

. . .
...

rK1 rK2 . . . rKK


where rii is an element of the precomputed inverted correla-
tion matrix R−1. To compute this vector-matrix product and
produce a vector of dot product elements:[

xT row1(R−1) xT row2(R−1) . . . xT rowK(R−1)
]
,

Fig. 4. Block diagram of accelerator’s processing logic

it takes K + delay clock cycles where K is number of
spectral bands and delay corresponds to the pipeline delay.
The resulting vector is then stored in intermediate registers in
stage 2. In this stage, incoming stream from DMA is stored
in shift register and used for computation of dot product with
computed vector from stage 1. This results in computation
of xT R−1x. Additionally, in stage 1 product sT R−1x is
calculated, where sT R−1 vector is stored in BRAM and used
for each incoming pixel. The result of this operation is squared
in stage 2. The final stage 3 can either be implemented in
dedicated HW or in SW, while for HW implementation, a
fixed-point divider is required, such as AXI IP divider [12]
provided by Xilinx. This substantially adds to the latency of
the output, however it can achieve significant speedup. On the
other side, when performed in SW, the pre-processed detection
statistics coming from FPGA accelerator are multiplied and
divided as being written to DDR memory. Finally, to stream
the output data and communicate with DMA, Master Output
module has been designed. It acts as an AXI stream master
interface which are not memory-mapped and allow data-burst
mode.

V. RESULTS

The FPGA accelerator shown in Fig. 4 has been imple-
mented in VHDL targeting ZedBoard development platform.
Performance analysis of the design and individual sub-modules
has been performed with post-synthesis results. The results
are shown in Table I with annotated bit widths used in each
module.

The FPGA accelerator implementation is constrained by dot
product datapath module speed. Although stages 1 and 2 can
operate at the same maximum frequency, other parts of the
design are able to operate at significantly higher frequencies
than the core datapath of the design. Thus, the dot product
module has been deeply pipelined for the optimal performance.
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TABLE I
PERFORMANCE ANALYSIS OF HW MODULES

Module Minimum period Maximum frequency

PS-PL system (32 x 16) 6.835ns 146.3MHz
FPGA accelerator (32 x 16) 5.745ns 174.06MHz

Stage 1/2 (32 x 16) 5.745ns 174.06MHz
DP controller (16 bands) 1.644ns 608.27MHz
DP datapath (32 x 16) 5.745ns 174.06MHz

Master Output (16 packets) 2.628ns 380.52MHz
BRAM module (32) 4.663ns 214.45MHz

Most importantly, the speed-up of the accelerator is 28.54
times when FPGA fabric is clocked with frequency of
100MHz. The speed-up is evaluated in comparison with ARM
Cortex-A9 processor running on 666.67MHz, while assum-
ing that the correlation matrix is uploaded once and reused
for consequent algorithm runs to detect a target signature.
Compared to full processing time of 4.00s in software for
Salinas scene (reduced to 16 spectral bands using PCA), where
ACE-R algorithm without correlation matrix calculation takes
598.28ms, the full computation time achieved with the use of
the accelerator is 3.29s, while ACE-R takes 20.96ms.

Post-synthesis resource utilization has been presented in
Tables II and III for 18-bit and 16-bit input hyperspectral data
samples, respectively. Number of bands is set to 16 for both
cases. It is important to note that the dedicated DSP block on
ZYNQ PL has inputs that are 25 and 18 bits wide. However,
since the design must accommodate different bit widths, those
parameters are generic and affect the performance of the
accelerator. In that sense, resource utilization for two sets of
bit width parameters is presented, with the resource-optimized
parameter set (25,18), and non-optimal set (32,16) providing
higher precision. Therefore, the BRAM elements are of 25 and
32 bits, respectively. It should be noted that Top Level includes
stage 1 and 2 of the FPGA accelerator as well as corresponding
Master Output modules. All modules were synthesized out-
of-context with default Vivado settings. The bit widths of the
BRAM elements and input samples in Table II correspond to
recommended input bit width for DSP blocks on ZYNQ PL. It
can be observed that the DP datapath uses exactly one block
for this setup and no other programmable logic to create a
multiplier or an adder.

TABLE II
RESOURCE UTILIZATION REPORT 25X18, 16 BANDS, 32 BIT OUTPUT

Module Slice
LUTs

Slice
Registers

DSP
blocks

BRAM
tiles

PS-PL system 6371 9935 32 10.5
Top Level 537 1772 23 0
Stage 1 8 5 17 0
Stage 2 8 22 3(6) 0
DP controller 5 5 0 0
DP datapath 2 0 1 0
Master Output (16 pkt) 83 298 0 0
BRAM wrapper (25 bit) 133 300 0 8

Table III shows utilization results for bit width values which
are not optimal for this architecture, resulting in usage of 2
DSP blocks to create a multiplier and additional logic elements
to synthesize the wider accumulator. Overall, the resource
utilization is higher in this case, emphasizing the importance
of correct use of dedicated FPGA functional units.

TABLE III
RESOURCE UTILIZATION REPORT 32X16, 16 BANDS, 32 BIT OUTPUT

Module Slice
LUTs

Slice
Registers

DSP
blocks

BRAM
tiles

PS-PL system 7567 11838 54 10.5
Top Level 1470 2937 40 0
Stage 1 905 1178 34 0
Stage 2 57 125 6 0
DP controller 5 5 0 0
DP datapath 53 69 2 0
Master Output (16 pkt) 83 298 0 0
BRAM wrapper (32 bit) 148 362 0 8

The part of the accelerator pipeline is shown in Fig. 5
with annotated bit widths. The accumulator in a dot product
module is 52 bit wide (for 16 bands) and truncated to 32 bits
at the end of both stages. To estimate the precision loss for
computation of xT R−1x, the module has been simulated as
well as signals debugged on ZedBoard and compared with
floating point values in MATLAB. Then, relative root mean
squared error is used as follows:

RRMSE =

√
1
N

∑N
i=1(SW (i)−HW (i))2

1
N

∑N
i=1 SW (i)

· 100% (12)

for produced data in HW (simulated and on-board) and ob-
tained data from MATLAB. Resulting RRMSE for computa-
tion of factor xT R−1x for 1000 samples is 0.2692%, whereas
resulting RRMSE for factor (sT R−1x)2 for the same number
of samples is 0.6134% due to square operation (64 bits).

Fig. 5. Part of FPGA accelerator pipeline with annotated bit widths for 16-bit
stream

Detection results on Pavia scene using ACE-R algorithm are
shown in Fig. 6 where ground truth map is given in Fig. 6(a).
The detection results obtained using HW/SW codesigned im-
plementation are presented in Fig. 6(b) and the error induced
by fixed-point implementation is shown in Fig. 6(c). Table IV
shows that the proposed fixed-point implementation does not
significantly degrade the results in terms of MCC and visibility
score.

5



(a) Pavia - ground truth

(b) Pavia 3D plot of detection results - Painted Metal Sheets endmember

(c) Pavia 3D plot of detection error compared to fixed point

Fig. 6. Pavia - Painted Metal Sheets detection results

TABLE IV
DETECTION PERFORMANCE

Implementation MCC score Visibility score AUC

SW model 0.81439 0.62253 0.81946
HW/SW 0.81379 0.61804 0.81727

VI. CONCLUSION

In this paper, HW/SW codesigned implementation of ACE
target detection algorithm for hyperspectral data has been
presented. A heterogeneous platform with processing system
and programmable logic has been used along with specific
communication interfaces. A number of algorithm imple-
mentations have been profiled for performance and resource

utilization for HW implementation has been reported. The
implemented design serves as a solid ground for the full HW
implementation where it is required to implement correlation
and inverse matrix calculation in the programmable logic in
order to accelerate the execution of the algorithm to fulfill near
real time requirement.
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