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Department of Electronic Systems

Norwegian University of Science and Technology (NTNU)
Trondheim, Norway

jonalv@stud.ntnu.no, egil.eide@ntnu.no, milica.orlandic@ntnu.no

Abstract—Stepped-frequency continuous-wave ground-
penetrating radars (SFCW GPRs) are characterized by
relatively low data acquisition speed caused by stepwise slow
scanning of the frequency spectrum. The improvement of the
imaging speed in SFCW GPR mostly relies on reducing the
data acquisition time. In this paper, a paradigm of compressive
sensing (CS) is explored in order to minimize the acquisition
time in three dimensional SFCW GPRs by reducing the amount
of real-time acquired data below the Nyquist rate by the use
of the likely spatial sparsity of the underground. The signal
reconstruction is performed by using the greedy algorithm
Orthogonal Matching Pursuit (OMP). Data set with synthetic
underground mines is accurately reconstructed for compression
ratios up to 85% causing that the data acquisition time is
reduced 6.67 times. In addition, the results show that for the
data set of synthetic mines degraded by uniform noise, the
proposed CS approach can be used for effective noise-removal
filtering.

Index Terms—Compressive Sensing (CS), Orthogonal Match-
ing Pursuit (OMP), Nyquist rate, sparsity, Stepped-Frequency
Continuous-Wave Ground-Penetrating Radar (SFCW GPR)

I. INTRODUCTION

Radar systems transmit microwave electromagnetic radia-
tion pulses which are reflected by the objects on their path.
In pulsed radars, the time between pulses and their reflected
components is used to determine the distance between the
radar and the observed objects. A Ground-Penetrating Radar
(GPR) performs detection and imaging of the underground
targets based on the reflected signal. GPR has been exten-
sively used as an effective non-destructive technology for a
wide range of applications such as detection of pipes, cables
and other subsurface infrastructures. The image produced by
GPR containing information in form of reflections of the
underground targets is known as radargram. The Stepped-
Frequency Continuous-Wave (SFCW) GPR system synthesizes
pulses in frequency domain instead of in time domain. An
SFCW radar transmits ideally all frequency components in a
stepwise manner within a defined bandwidth contained in one
corresponding time domain impulse. The quality of synthe-
sized impulses is determined by the number of frequencies
and in this manner, the accuracy of the object imaging can be
increased compared to other radar types. This comes at the cost
of low scanning speed since the time needed to acquire data
over the radar bandwidth is excessively high [1]. A possible
approach to reduce the acquisition time is by acquiring less

frequency components or by transmitting simultaneously a
number of frequencies. Simultaneous transmission increases
the complexity of hardware and introduces radio-frequency
coupling problems, whereas lowering the number of frequency
components leads usually to the ambiguity phenomena in
the reconstructed signal. In the literature, the use of a novel
digital signal processing technique known as Compressive
Sensing (CS) to reduce the amount of real-time acquired data
is introduced [1], [2]. The CS approach reconstructs a signal
without aliasing for sampling rates below the Nyquist rate
with the requirement for the acquired signal to be sparse in a
particular basis. A signal is considered sparse in a domain if it
can be represented by a few significant nonzero coefficients,
whereas the remaining coefficients are equal to zero. Fortu-
nately, most of real-applications signals are either sparse or
almost sparse. Indeed, in GPR applications, the underground
space is usually almost sparse as the number of targets is likely
to be far below the total number of spatial positions [1]. In
addition to the sparsity requirement, the data sampling must
be incoherent which is ensured by performing the sampling
randomly. Although CS data acquisition is less demanding,
the signal reconstruction achieved by means of sparse recovery
algorithms requires high computational resources.

The remainder of the paper is organized as follows. Sec-
tion II reviews the principles of CS and the sparse recovery
algorithms. In Section III, a feasibility study of CS in a
three dimensional SFCW GPR is performed and an imple-
mentation of a compressive SFCW GPR system is presented.
Section IV describes the results of experiments with simulated
underground mines obtained with and without uniform noise.
Finally, Section V summarizes the main conclusions and
suggests the future work.

II. BACKGROUND

A. Principles of compressive sensing (CS)

Let vector f contain N samples acquired at the Nyquist rate
in a certain domain. The transform matrix ΨNxN is used to
transform a signal between different domains. For instance, the
Discrete Fourier Transform (DFT), Discrete Cosine Transform
(DCT), and Discrete Wavelet Transform (DWT) matrices are
frequently used as Ψ in various applications. The acquired



samples in f can be represented as a linear combination of the
orthogonal basis vectors [3]:

f = Ψx, (1)

where x is the vector in transform domain with length N .
In CS, measurement vector y with M elements is collected
by computing the randomized projections of f over the mea-
surement matrix Φ of size M ×N as given:

y = Φf = Ax, (2)

where A is the dictionary given by the matrix product of Φ and
Ψ. This is an undetermined system of linear equations with
either no solution or infinitely many solutions since the number
of unknowns N is greater than the number of equations M .
This problem is simplified if x is a sparse signal, i.e., most
of its coefficients are zero and only a few are different from
zero. The support of vector x is defined as a set of indexes
of the nonzero coefficients [3]:

supp(x) = {n ∈ [1, N ] | x[n] 6= 0}, (3)

and the sparsity level K of x is defined as its number of
nonzero coefficients:

K = card{supp(x)}. (4)

For a K-sparse signal x when K � N , sparse recovery
algorithms can be used to encounter an accurate approximation
of the unique solution of the proposed system of equations. In
addition, the incoherence property for Φ with Ψ is ensured
by performing the sampling randomly as any transform matrix
Ψ is highly probable to be incoherent with randomly built
measurement matrix Φ [4]. In the light of this, there are
different manners to build the randomness of Φ [3]. In this
paper, it is obtained by:

1) generating a random vector γ of length M which
contains the randomly chosen indexes in vector f ,

2) building an M × N matrix 0 with elements equal to
zero,

3) and setting to one the matrix element in each correspon-
dent row of 0 whose column index equals to the index
of the element taken from vector f as follows:

Φ = 0(j,γ(j,1))1≤j≤M
= 1. (5)

Consequently, the dictionary A corresponds to a partial ran-
dom transform matrix since A contains only rows of matrix
Ψ which correspond to the coefficient indexes taken from f .
This can be expressed as follows:

A = Ψ(γ(j,1),∀)1≤j≤M
. (6)

Finally, the Compression Ratio denoted as CR, measures how
much the data is to be compressed compared to the amount
of data acquired at the Nyquist rate. The CR is given as:

CR (%) = (1− M

N
) · 100. (7)

B. False alarms ratio accuracy metric

If the recovery provided by the sparse recovery algorithms
is not accurate enough, the estimation of x might contain
undesired false alarms from non-existent underground targets.
An estimation accuracy metric false alarms ratio (FAR), is
given as follows:

FAR (%) =
False alarms

Total detected targets
· 100, (8)

where the total detected targets term corresponds to the
number of estimated significant coefficients whilst the false
alarms is defined as the number of significant coefficients
which are surrounded by nonsignificant pixels equal to zero
as depicted in Fig. 1.

Figure 1: A nonzero pixel (white) surrounded by nonsignifi-
cant pixels (black)

The presented accuracy metric is based on the assumption
that underground targets are represented in radargrams in the
form of hyperbolas and therefore isolated one-pixel targets are
registered as false alarms.

C. Overview of sparse recovery algorithms

Sparse recovery algorithms estimate a unique sparse solu-
tion to the system in (2). Although each algorithm approaches
the problem differently, the common goal is to estimate the
nonzero coefficients values in x as well as their respective
indexes. The algorithms are usually classified in two main
groups, convex optimization and greedy algorithms, depending
on their reconstruction accuracy and computational complex-
ity [5]. The convex optimization algorithms, such as Basis
Pursuit (BP) [6] and Gradient Projection for Sparse Recon-
struction (GPSR) [7], provide accurate reconstruction at the
expense of high computational complexity. On the other side,
greedy algorithms include pursuit and thresholding algorithms
such as Matching Pursuit (MP) [8], Orthogonal Matching
Pursuit (OMP) [9], Compressive Sampling Matching Pursuit
(CoSaMP) [10], Regularized Orthogonal Matching Pursuit
(ROMP) [11], and Iterative Hard Thresholding (IHT) [12]
which offer relatively low computational complexity at the
expense of reducing the estimation accuracy.

D. Orthogonal Matching Pursuit (OMP)

OMP [13] is an iterative algorithm widely used for sparse
recovery due to its moderate simplicity, and acceptable accu-
racy. The iteration i of the algorithm is depicted in Fig. 2.

Estimation of the index of a new nonzero coefficient in x
is performed by analyzing which atom a, a column in the
dictionary A, presents the highest projection over the residue
r(i−1) computed in the previous iteration (for i=1, r(i−1)=y).



Figure 2: Computational steps in one iteration of OMP algo-
rithm

The index of the highest projection in magnitude, λ(i), given
as:

λ(i) = argmax(


| 〈a1, r

(i−1)〉 |
| 〈a2, r

(i−1)〉 |
...

| 〈aN, r
(i−1)〉 |

) (9)

matches not only the index of the maximum correlation atom
aλ(i) , but also the index of the new significant coefficient to
estimate. The computed λ(i) is added to vector ĉ

(i)
i×1 which

collects the indexes of the nonzero coefficients calculated
in the different iterations. The atom aλ(i) is added to an
augmented subdictionary B

(i)
M×i which gathers the highest

projection atoms selected across the iterations.
Estimation of the new nonzero coefficient x̂(λ(i),1), and

tuning of the coefficients computed in the previous iterations
is done by computing the projections over the subdictionary
B(i) as follows:

y = B(i)s(i), (10)

where s
(i)
i×1 contains the values of the nonzero coefficients

computed up to the current iteration. To ensure a unique so-
lution, the least squares (LS) criterion is used to approximate
s(i) as follows:

ŝ(i) = (B(i)TB(i))−1B(i)Ty (11)

s.t.
min(|| y−B(i)ŝ(i) ||22). (12)

Residue computation to determine the estimation error is
given as:

r
(i)
M×1 = y−B(i)ŝ(i). (13)

The orthogonality of the subdictionary atoms over the residue,
i.e., 〈aj, r

(i)〉 = 0 for ∀ aj ∈ B(i), prevents from selecting
the same atom in the next iterations.

Once the algorithm halts after a certain stop condition is met
in the I-th iteration, the estimation x̂ is obtained by placing the
entries from ŝ

(i=I)
I×1 in the respective indexes given by ĉ

(i=I)
I×1 .

III. FEASIBILITY STUDY OF COMPRESSIVE SENSING ON
THE SFCW GPR AND PROPOSED METHODOLOGY

A. Compressive sensing on the SFCW GPR

The SFCW GPR under study scans the electromagnetic
spectrum in the range 30 MHz-3030 MHz [14] by acquiring

one frequency sample per step. The system senses the under-
ground in three dimensions by means of the array of transmit
and receive antennas shown in Fig. 3. The information is stored
in a frequency data cube, shown in Fig. 4, where the X ,
Y , and Z dimensions correspond, respectively, to the in-line
direction, cross-line direction, and the direction perpendicular
to the ground. A data set with synthetic underground mines is

Figure 3: Array of transmit and receive antennas [14]

Figure 4: Data cube format for storing the underground data

used to study whether the sparsity requisite is satisfied. Fig. 5
shows the magnitude and phase of the complex received signal
in the frequency domain for a given position (X,Y).

While the frequency data are used in some applications to
detect and measure the material properties of the subsurface,
it does not evince the echoes from the underground targets.
However, Fig. 6 shows that after performing the Inverse
Fast Fourier Transform (IFFT) of the frequency data, the
echoes emerge in the resulting complex time domain signal.
In particular, the main reflection (at 2.2 ns) is produced by the
coupling from the transmit antenna that this system normally
presents, and the weaker echo (at 7.9 ns) corresponds to an
actual underground target, specifically a mine.
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Figure 5: Magnitude and phase of the complex frequency
domain signal
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Figure 6: Magnitude of the complex time domain signal

When analyzing the sparsity requirement of the data in the
frequency and time domains, neither the frequency nor time
data are strictly sparse. Nonetheless, the time domain presents
a compressible behavior. A signal is considered compressible
when most of its coefficients are close to zero (in linear
units), and only a few of them (in this case, the reflections)
are nonzero. Such signals are often approximated as sparse.
Accordingly, it is acceptable that the time domain signal
is assumed to be sparse. As a conclusion, for the SFCW
GPR under study, CS is a feasible paradigm to compress the
acquired data in frequency domain, and perform the sparse
recovery in time domain. If the reconstruction is performed
with enough accuracy, the recovered time domain signal x̂
should contain only the echoes from the underground targets.
Conversely, if the recovery is not accurate enough, false alarms
might occur in the signal.

B. Sparsity level estimation analysis

A halting criterion needs to be defined to bound the ex-
ecution time required by the OMP algorithm to perform the
signal recovery. Typically, a halting condition consists of either
setting a threshold over the maximum reconstruction error
or limiting the minimum error difference between iterations.
However, assuming that the algorithm chooses correctly in
each iteration a new atom in the dictionary A, only K
iterations are demanded to reconstruct a K-sparse signal and
the total number of iterations may be bounded to K. Due
to the fact that x and K are unknown, an estimate of the
sparsity level K̂ needs to be provided to the algorithm. The
parameter K̂ has a direct impact on both computation time
and reconstruction accuracy.

For a low K̂, the algorithm estimates a sparse x̂ by setting
a conservative (high) threshold over the signal to estimate.
On the other side, a high K̂ gives as a result a dense x̂
by setting a soft (low) threshold. Consequently, a low K̂ is
more likely to reduce the number of false alarms compared
to a high K̂. Regarding the compression ratio, the more the
data are compressed, i.e., the higher CR, the less accurate
reconstruction of the signal is obtained. Indeed, a high CR
lowers the number of residue entries which are minimized in

each iteration leading to an estimation with increased false
alarms.

A trade-off study between K̂ and CR for accurate signal
reconstruction follows. For high CR, a conservative threshold,
i.e., a low K̂, needs to be set to diminish the false alarms,
whereas both soft and conservative thresholds, i.e., high or
low K̂ values, can be utilized for low CR. In a reconstruction
containing a low number of false alarms for a certain K̂ and
a medium CR, a decrease of K̂ does not raise the number of
false alarms, whereas the number of false alarms increases as
K̂ increases. The false alarms due to the increase of K̂ can
be lowered by reducing the CR. For estimating the under-
ground sparsity, a previous knowledge about the underground
is important. However, with no prior information about K̂,
the trade-off study can be used for parameter tuning in the
reconstruction process. The lower occurrence of false alarms
in the beginning of the reconstruction process is ensured by
setting low CR and K̂ parameters. The two parameters can
be then tuned accordingly to obtain the desired sparsity and
compression.

Finally, the time required for the reconstruction is also a
relevant aspect for real-time data recovery in GPR technology.
The reconstruction time depends on both K̂ and CR, having
K̂ the greater impact on the total time as it directly sets the
halting condition of the algorithm.

C. Proposed methodology

The implementation of a compressive SFCW GPR system
is performed in MATLAB. As shown in Fig. 7, it comprises
two modules:
• Random subsampling module with vector f containing
N frequency samples and CR parameter as inputs. The
module generates vector γ with random indexes and
outputs the randomly subsampled frequency data y and
the dictionary matrix A built as a partial random Fourier
matrix according to γ.

• OMP module contains as inputs the estimated sparsity
level K̂ in addition to vector y and matrix A. Its outputs
are the estimated time domain signal x̂ and the error of
the estimation r(i=K̂).

Figure 7: Modules of the compressive SFCW GPR

IV. RESULTS

A. Estimated noise-free radargrams

Original and estimated XZ radargrams are computed from
|x| and |x̂|, respectively. A characteristic channel Y with clear
underground mines has been selected in the results below.



Fig. 8 shows the original radargram where each hyperbola
corresponds to a different underground mine. There are two
shallow side mines, a deep mine in between and the coupling
from the transmit antenna translated into a shallow horizontal
line.
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Figure 8: Original radargram

The estimated radargram in Fig. 9a is the result of OMP
algorithm for K̂=5 and CR=85%. When compared with the
original radargram, the algorithm is capable of:

• estimating inlines with echoes in x corresponding to
the reflections from the mines as well as the transmit
coupling,

• estimating the placement of the significant samples in x,
• suppressing the nonsignificant samples in x.

Accurate estimation of the placement of significant samples
in x implies that the targets are estimated at the right
depths. Fig. 9b shows the estimated radargram for K̂=25 and
CR=85%. In this case, the hyperbolas have more defined
shapes in comparison to Fig. 9a due to the denser x̂. However,
it confirms that a higher K̂ leads to a soft threshold which
raises the number of false alarms from FAR=2.50% (Fig. 9a)
to 32.73% (Fig. 9b) when the CR is also high. The high
density of x̂ in Fig. 9b can be maintained without paying
the price of false alarms if the CR is reduced to 50%, as
shown in Fig. 9c. Since the low CR increases the number
of residues minimized in each iteration, the false alarms are
considerably diminished to FAR=1.56%. As a conclusion,
the low K̂ values can be selected along with either high or
low CR values, but higher K̂ values are only to be used
combined with low CR values. In addition, Fig. 9c shows that
the estimated radargram presents pixels with similar colour
to the pixels in the original radargram in Fig. 8. In short,
the algorithm is able to estimate accurately the strength of
the received reflections. Under the assumption of uniform
sensing time, the time required for CS data acquisition with
compression ratio CR = 85% is ≈ 6.67× lower than the
time used for obtaining uncompressed data. Finally, Fig. 9d
shows the estimated radargram for K̂=5 and CR=85% when
the data sensing is performed periodically. The non-random
acquisition leads to an unsuccessful reconstruction with many
false alarms (FAR=36.73%) as the incoherence requirement
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(a) K̂=5 and CR=85%
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(b) K̂=25 and CR=85%
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(d) K̂=5 and CR=85%

Figure 9: Estimated radargrams

is not fulfilled. Parameters K̂, CR and FAR for the previous
noise-free radargrams are summarized in Table I.

TABLE I: Estimation accuracy in noise-free radargrams

K̂ CR FAR Figure

5 85% 2.50% 9a
5 (periodic) 85% 36.73% 9d

25 85% 32.73% 9b
25 50% 1.56% 9c

B. Estimated noisy radargrams

Uniform noise, distributed as ∼ [0,max(|f |)PSNR ], is added to the
real part of the frequency samples in f , where PSNR is the
Peak Signal-to-Noise Ratio (in linear units) in the frequency
domain. For the analysis, the constant PSNR, specifically
PSNR=20 dB, is used. The noise added to the frequency data
is translated into noise in time domain. Fig. 10 shows the
original radargram created from f with added uniform noise.
Fig. 11a shows the estimated radargram computed from the
noisy y for K̂=5 and CR=50%. It is shown that the false
alarms produced by the noise have been filtered out. As a
conclusion, CS can be used for noise-removal filtering. Since
noisy scenarios significantly increase the occurrence of false
alarms, conservative thresholds, i.e., low K̂ values, are used
to ensure that most of the false alarms are filtered out. To
illustrate this point, Fig. 11b shows the estimated radargram
computed from the noisy y when CR=50% and soft threshold
K̂=25 is used. The number of false alarms after lowering the
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Figure 10: Original radargram from noisy f
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(a) K̂=5 and CR=50%
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(b) K̂=25 and CR=50%

Figure 11: Estimated noisy radargrams

threshold to K̂ = 25 is increased to FAR=37.14% compared
to Fig. 11a which presents FAR=1.82%. A reduction of
CR does not decrease the occurrence of false alarms as the
threshold is not conservative enough. Therefore, the false
alarms can only be diminished by lowering K̂. Parameters
K̂, CR and FAR for the previous noisy radargrams are
summarized in Table II.

TABLE II: Estimation accuracy in noisy radargrams

K̂ CR FAR Figure

5 50% 1.82% 11a
25 50% 37.14% 11b

V. CONCLUSION AND FURTHER DIRECTION

In this paper, the feasibility of using CS sparse recovery
algorithms in three dimensional SFCW GPR to decrease the
amount of real-time data sensed and thus reduce its acquisition
time is discussed. The OMP algorithm is used to recover the
synthetic data set of the underground mines with the assistance
of an a priori estimate of the underground sparsity. Based
on the results, it can be concluded that a low sparsity level
sets a conservative threshold reducing the false alarms at the
expense of less defined hyperbolas. In addition, low sparsity
level values allow the use of both low and high CR values.
On the other hand, high sparsity levels give higher accuracy of
detection of hyperbolas at the cost of the increased likelihood

of false alarm occurrences. In this scenario, it is required that
the CR is set to low values to avoid creation of false alarms
caused by high CR. The implemented OMP algorithm was
verified by the use of a data set with synthetic underground
mines, achieving compression ratio CR=85% and potentially
reducing in this way the acquisition time by a factor 6.67.
Also, the data set reconstruction was successfully tested in
the noisy environment by adding uniform noise. It can be
concluded that CS can be used for effective noise-removal
filtering as long as K̂ and CR are properly chosen. The
presented work can be further improved by performing CS
reconstruction of real data sets.
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