
1

An FPGA-oriented HW/SW Codesign of
Lucy-Richardson Deconvolution Algorithm for

Hyperspectral Images
Karine Avagian∗, Milica Orlandić∗, Tor Arne Johansen †

∗ Department of Electronic Systems,
† Centre for Autonomous Marine Operations and Systems (NTNU-AMOS),

† Department of Engineering Cybernetics
Norwegian University of Science and Technology

karineav@stud.ntnu.com, milica.orlandic@ntnu.no, tor.arne.johansen@ntnu.no

Abstract—Hyperspectral images acquired during remote
sensing are usually corrupted by optical blur and additive
noise. This article considers a method to reduce the spatial
blur in hyperspectral images by applying the Lucy-Richardson
deconvolution algorithm. The algorithm is based on convolution
with a point-spread function, which is assumed to be known.
The complete algorithm is implemented as a HW/Sw Co-Design
between the central processing unit and the programmable logic.
The convolution, as a time consuming operation, is accelerated
in an FPGA. When compared to the software implementation,
a speed-up by a factor of 2.7 is achieved when using the
accelerated HW/SW Co-Design implementation. Hyperspectral
images synthetically distorted by a known Gaussian blur and an
additive noise are used for testing. The images are then restored
by applying the Lucy-Richardson deconvolution algorithm on
each spectral band.

Keywords — hyperspectral images, deconvolution,
Lucy-Richardson Algorithm, FPGA

I. INTRODUCTION

A hyperspectral data cube is a composition of multiple
images, also called bands, depicting the same scene at different
wavelengths λ. The hyperspectral cube is a three-dimensional
array, where a sample is defined by its position (x, y, λ). A
pixel with fixed spatial (x, y) coordinates contains a set of
Nλ components in the spectral domain, where each element
describes the intensity of the reflected radiation. The reflected
radiation plotted as a function of the wavelength is called the
spectral reflectance curve and it shows the spectral signature
of the objects surface.

Hyperspectral imaging (HSI) has been used in remote
sensing Earth observation in recent decades. In HSI remote
sensing applications, the observed data are degraded by various
sources such as atmospheric effects and instrumental noise
[1]. In addition, an image can be distorted by optical or
motion blur. Optical blur is caused by the camera’s optics and
is modeled with the instrument’s response function, whereas
motion blur is caused by either the motion of the camera or
the motion of the observed object. In this article, the optical
blur and the additive Gaussian noise are assumed to be the
only noise sources present in the acquired images. The image
restoration can be performed on all spectral bands at the same
time or in band-by-band manner assuming that the distortion

in the bands in the hyperspectral image are independent of
each other [2]. The latter assumption holds in the case there
are no cross-channel correlations. If the blur, described by the
convolution, is also assumed to be spatially invariant across
the band, the image restoration can be modelled as the inverse
process of the convolution, i.e. deconvolution.

A number of algorithms for image restoration, such as
Tikonov-Miller [3], Wiener filter [4] and Lucy-Richardson
deconvolution [5], [6] have been widely used. In this paper,
the iterative Lucy-Richardson (LR) deconvolution algorithm is
chosen to be implemented based on experimental results [7] in
comparison to the other well-known deconvolution algorithms.
The LR algorithm belongs to the non-blind deconvolution class
of algorithms requiring prior knowledge about the blur in order
to successfully restore the degraded image. The algorithm is,
however, characterized by the high computational complexity
equal to O(MNmn) in spatial domain, where M × N is
image size and m × n is the size of convolution kernel. By
the assumption that the kernel is separable, the computational
complexity changes toO(MN(m+n)). In addition to the soft-
ware optimization, the paper presents the acceleration of the
LR algorithm done by partitioning its functions between FPGA
and general-purpose processors, where the time-consuming
operation, convolution, is performed by a dedicated accelerator
on programmable logic.

This paper is divided in the following sections: in Sec-
tion II, the LR algorithm is described and recent state-of-the-
art implementations of the algorithm are presented. In Section
III, the proposed architecture is presented. In Section IV, the
visual results from the software simulations and a comparison
of timing results between the proposed hardware-software
codesign implementation and a software-only implementation
are presented. Finally, in Section V, the conclusions are drawn.

II. BACKGROUND

Based on the assumption that the noise is represented by
an independent and identically distributed Gaussian function
and the spectral bands are independent, the image restoration
can be performed on each band separately [8]. In the LR
deconvolution algorithm, it is assumed that image g(x, y) in



2

each band λ of a hyperspectral three-dimensional data cube is
blurred by the two-dimensional point-spread function (PSF),
h(x, y). The LR algorithm is then defined by the recursion:

f̂(x, y)n+1 = f̂(x, y)n ·

[
g(x, y)

f̂(x, y)n ∗ h(x, y)
∗ h(−x,−y)

]
(1)

where h(−x,−y) is flipped PSF, f̂(x, y) is the estimated
image, g(x, y) is the observed/degraded image, n is the index
of iteration and the operator ∗ represents convolution. The
multiplication and division are element-wise operations. The
convolution operation is a neighborhood operation, where an
input image region of the same size as the PSF is required.
In addition, a 2D Gaussian PSF h(x, y) is isotropic i.e.
h(x, y) = h(−x,−y). An initial estimated image f(x, y)0 is
usually set to be equal to the average intensity of the input
image g(x, y) or to the input image g(x, y).

A. State-of-the-art

The LR deconvolution algorithm is usually used in the
spatial domain [9], [10]. For shift-invariant PSF, the algorithm
can be also employed in the frequency domain [11] based on
the fact that the convolution operation in the space domain
is transformed into the matrix multiplication in the frequency
domain. In the work presented in [11], the frequency transform
is done by performing the Fast Fourier Transform (FFT) and
the Inverse Fast Fourier Transform (IFFT). The implemented
method uses an embedded DSP solution for FFT and IFFT
computations and a processing system for controlling the rest
of the algorithm. The system is implemented on the Xilinx
Virtex-4 with the maximum operating frequency of 100 MHz,
whereas the operating frequency of DSPs is 600 MHz. The
implementation is tested on the images of size 64 × 64 with
a 13 × 13 kernel. Recent works [9], [10] implement the LR
deconvolution algorithm fully in hardware. In [9], it is assumed
that the blur is caused by the motion of the imaging system
and that there is no additive noise. The architecture consists of
a convolution module, a division module and a multiplication
module. The testing is performed for image of size 800 × 525
and 9 × 9 kernel. For the given parameters, the maximum
operating frequency is 61 MHz. The memory requirement is
a limiting factor which does not support large images. In
particular, for the space-variant point-spread function, it is
required not only to store the image, but also the coefficients of
the kernels. An implementation in [10] uses the space-variant
PSF to model the lens distortions. The PSF is described as
the 2-D asymmetric Gaussian function, and a different PSF is
associated to each pixel. The images of size 640 × 480 are
used for testing and the dimensions of the PSF kernels are
smaller than 10.

B. Measure of quality

The performance of the LR algorithm is evaluated using
the Peak Signal-to-Noise Ratio, PSNR, and Structural Simi-
larity Index, SSIM. The PSNR metric is a standard quality

metric for a comparison of the image manipulation methods
and is computed across spectral bands as follows:

PSNR(f̂ , f, λ) = 10log10
peakval2

MSE(f̂(λ), f(λ))
(2)

where peakval is the largest value for a defined data width and
MSE is mean square error between the restored image f̂(λ)
and original blur- and noise-free image f(λ).

The measure of restoration quality SSIM is given as:

SSIM(f̂ , f, λ) = [l(f̂ , f, λ)α · [c(f̂ , f, λ)]β · [s(f̂ , f, λ)]γ (3)

where l(f̂ , f, λ) compares the luminance of the observed
objects in the reference image f(λ) to the luminance of the
same object in the estimated image f̂(λ), c(f̂ , f, λ) is the
contrast comparison and s(f̂ , f, λ) is the comparison in the
structural variations [12]. The parameters α, β and γ define
the relative weight of each component. In order to assess the
image quality, the SSIM index is applied locally, on the small
image regions, rather than on the whole image. The overall
image quality is then computed by the mean SSIM, MSSIM,
as follows:

MSSIM(F̂(λ),F(λ)) =
1

M

M∑
i=1

SSIM(f̂ , f, λ) (4)

where F̂(λ) and F(λ) are the restorted and the reference
images, respectively, f̂i(λ) and fi(λ) are the image elements
at the i-th local window of F̂(λ) and F(λ) respectively and
M is the number of local windows [12].

III. ARCHITECTURE

A HW/SW codesign architecture is implemented and
tested on the ZedBoard development board with Zynq-7020
SoC. The complete system is presented in Fig. 1 with
processing system, memory and accelerator with optimized
datapaths in programmable logic. The general program flow
with portions of the algorithm partitioned between the host
processing system and programmable logic is presented in
Fig. 2. The processing system loads and exports images from
an SD-card, type-casts data to/from fixed-point or floating
point representations, performs element-wise multiplication
and division operations, whereas the convolution is accelerated
in programmable logic. The initialization and communication
of the accelerator is controlled by the processing system. The
implemented application-specific accelerator performs spatial
convolution between an input image and a Gaussian kernel.

The implemented Convolution Accelerator consists of
a convolution module and controllers as shown in a detailed
block diagram in Fig. 3. The read and write operations are
controlled by two separate controller modules. In addition,
a counter module counts until the first valid output pixel is
produced. The convolution module proposed by [13] is used
for convolution computation of an image of size M ×N with
a kernel of size k × k. In order to accelerate the convolution
process, separability of the Gaussian kernel is exploited. The
separability property provides a possibility to perform two 1-
D convolutions with 1 × k and k × 1 kernels instead of 2-D
convolution with kernel k × k.



3

Fig. 1: Block design for LR deconvolution.

Fig. 2: A general program flow for the hardware/software
implementation of the LR-deconvolution.

Convolution is performed by moving the kernel across
the input image. At each position, a sample spanned by the
neighborhood of the same size as the kernel, is processed. As
presented in Fig. 4, the samples are used several times during
the processing. For example, the sample I14 is used 7 times as
a neighbor in the convolution process. The redundant reloading
results in longer processing time due to the communication
latency with the external memory. To avoid unnecessary
loading of the same sample into the convolution module,
line buffers are used locally in the accelerator. In Fig. 5, the
hardware architecture of a separable 2-D convolution module
is presented. The input sample is initially directly used in

Fig. 3: Block diagram for the convolution module.

the convolution computation, and it is sent to the first line
buffer in the next clock cycle. The number of required line
buffers is (k − 1), whereas the size of each buffer is equal
to the number of samples within a line in the x direction of
the band, Nx. Computation of the 1-D convolution with the
kernel, H(y), is performed by loading the last elements from
each line buffer into the computational module. The results of
the multiplications are summed and sent to the second 1-D
convolution module where the multiplication and summation
are performed on the results of the 1-D convolution with the
kernel H(x).

Fig. 4: An example of data requirements for 1-D convolution
with a 3 × 1 kernel.

IV. RESULTS

The proposed HW/SW codesign implementation par-
titions the LR deconvolution algorithm between processing
system and programmable logic. The computationally inten-
sive convolution operation is accelerated by the convolution
module implemented in the programmable logic. The module
is described by the VHDL language, and the Vivado tool is
used for synthesis, implementation, system integration, testing
and verification on a Zedboard development board [14]. For
dataflow testing and verification, a 9×1 Gaussian kernel with
σ = 2.3 is used as the PSF function, where the kernel
coefficients are given as:

H =
1

128
· [5 10 16 21 23 21 16 10 5]. (5)



4

Fig. 5: The separable 2-D convolution [13].

The testing and verification of the complete implementation
are performed by the use of Pavia hyperspectral data set
acquired by the ROSIS sensor [15] and characterized by 103
spectral bands and spatial resolution 610×340 pixels. A gray-
scale image of the 70-th band is shown in Fig. 6.

Fig. 6: Pavia data set, 70th band

A. LR deconvolution on noise-free data

The results obtained after LR deconvolution on Pavia
data set is shown in Fig. 7. The original image in Fig. 7(a)
is the composite of three spectral bands (50, 30 and 10). The
blurred image using the Gaussian kernel with σ = 2.3 and size
k = 9×9 is given in Fig. 7(b). The results after running LR-
deconvolution for 10 and 1000 iterations are shown in Fig. 7(c)
and Fig. 7(d), respectively. The quantitative measurements are
shown in Table I, where the distorted and restored images are
compared to the undistored image.

TABLE I: LR deconvolution on noise-free Pavia data set

PSNR (dB) MSSIM
Blurred 46.0666 0.9763
Deblurred 10 47.8156 0.9846
Deblurred 1000 50.5024 0.9918

It is observed that the estimated images converge to the
original image both visually by inspecting the restored images

(a) Original image (b) Degraded image

(c) 10 LR iterations (d) 1000 LR iterations

Fig. 7: Pavia hyperspectral cube before and after LR decon-
volution

in Fig. 7 and quantitatively by the use of quality metrics in
Table I, where both PSNR and MSSIM values increase with
the higher number of iterations.

B. LR deconvolution on noisy data

In this scenario, the Pavia data set is degraded by both
Gaussian blur and additive Gaussian noise with two different
mean value and variance sets, [0, 0.0001] and [0, 0.01]. The LR
deconvolution algorithm is tested for 10 and for 100 iterations.
The degraded and restored images are given in Fig. 8 for the
case of additive noise with σ2

1 = 0.0001 and in Fig. 9 for the
case of additive noise with σ2

2 = 0.01.

(a) Original image (b) Degraded image

(c) 10 LR iterations (d) 100 LR iterations

Fig. 8: Results obtained by running LR deconvolution algo-
rithm on the Pavia data set degraded by the Gaussian blur with
an additive Gaussian noise with σ2 = 0.0001.

The quantitative measurements are shown in Table II.
The quality of the restored images in the presence of noise
depends on the amount of noise. If the noise level in the
degraded images is relatively low, the LR deconvolution
succeeds to restore images. For σ2

1 , both PSNR and MSSIM
result in accepted quality metric values. For high noise levels,
the LR deconvolution tends to amplify the noise. In Table II
for σ2

2 , it is observed that both the PSNR and the MSSIM
values decrease after LR deconvolution is employed. Thus, in
the presence of large amount of noise, it is required to remove
the noise before performing LR deconvolution.



5

(a) Original image (b) Degraded image

(c) 10 LR iterations (d) 100 LR iterations

Fig. 9: Results obtained by running LR deconvolution algo-
rithm on the Pavia data set degraded by the Gaussian blur with
an additive Gaussian noise with σ2 = 0.01.

TABLE II: Performance metrics of LR deconvolution on noisy
Pavia hyperspectral cube

PSNR (dB) M-SSIM
Noisy σ2

1 = 0.0001 45.9745 0.9757
Deblurred 10 47.4241 0.9831
Deblurred 100 47.5869 0.9837
Noisy σ2

2 = 0.01 41.3364 0.9266
Deblurred 10 41.0394 0.9232
Deblurred 100 36.6892 0.8204

C. Performance Analysis

The LR deconvolution algorithm is implemented both
as a software-only solution running on the ARM processing
system on Zynq SoC and as a HW/SW codesign implemen-
tation accelerating computationally intensive portions of LR
deconvolution algorithm by placing them on FPGA.

One iteration on a gray-scale image of size 610 × 340
coded with 16-bit values takes 108 ms in a software-only
solution. While the processing of the same image in the
proposed method takes 40 ms. A speed-up by a factor of
2.7 is achieved using the HW/SW codesign implementation
compared to software-only implementation. The maximum
achieved operating frequency is 114 MHz. The post-
implementation utilization summary is shown in Table
III. In order to further optimize the performance of the
implementation, both ARM cores of the Zynq processing
system can be used to perform deconvolution of two different
bands in parallel.

TABLE III: The post-implementation resource utilization for
the input image of size 640 × 310 with address width 16-bits.

Resource Utilization Available Utilization %
LUT 4930 53200 9.27
LUTRAM 598 17400 3.44
FF 6004 106400 5.64
BRAM 6 140 4.29

V. CONCLUSIONS

The paper proposes an efficient HW/SW codesing im-
plementation of a fast LR deconvolution algorithm. The choice
of the algorithm is based on low complexity, high performance
and regular structure which allows to be accelerated on FPGA.
Both software-only and HW/SW codesign implementations
have been proposed and compared, where a speed-up by a
factor 2.7 is achieved by using the HW/SW implementation.
Further work can include an improved partitioning of sequen-
tial operations on the processing system and/or further map-
ping of computationally intensive operations to programmable
logic.

ACKNOWLEDGEMENT

This work was supported by the Research Council of
Norway (RCN) through MASSIVE project, grant number
270959, and AMOS project, grant number 223254.

REFERENCES

[1] Behnood Rasti, Paul Scheunders, Pedram Ghamisi, Giorgio Licciardi,
and Jocelyn Chanussot. Noise reduction in hyperspectral imagery:
Overview and application. Remote Sensing, 10(3):482, 2018.

[2] Haiyan Fan, Chang Li, Yulan Guo, Gangyao Kuang, and Jiayi Ma.
Spatial-spectral total variation regularized low-rank tensor decomposi-
tion for hyperspectral image denoising. IEEE Transactions on Geo-
science and Remote Sensing, PP, 05 2018.

[3] G. M. P. van Kempen, H. T. M. van der Voort, J. G. J. Bauman, and K. C.
Strasters. Comparing maximum likelihood estimation and constrained
Tikhonov-Miller restoration. IEEE Engineering in Medicine and Biology
Magazine, 15(1):76–83, Jan 1996.

[4] R T Bates and M. J. McDonnell. Image Restoration and Reconstruction.
Oxford University Press, Inc., New York, NY, USA, 1986.

[5] L. B. Lucy. An iterative technique for the rectification of observed
distributions. , 79:745, jun 1974.

[6] William Hadley Richardson. Bayesian-Based Iterative Method of Image
Restoration. J. Opt. Soc. Am., 62(1):55–59, Jan 1972.

[7] Timo Bretschneider. On the deconvolution of satellite imagery. vol-
ume 4, pages 2450 – 2452 vol.4, 07 2002.

[8] Stanley J. Reeves. Chapter 6. image restoration: Fundamentals of image
restoration. Academic Press Library in Signal Processing, 4, 12 2014.

[9] O. Anacona-Mosquera, J. Arias-Garcı́a, D. M. Muñoz, and C. H. Llanos.
Efficient hardware implementation of the Richardson-Lucy Algorithm
for restoring motion-blurred image on reconfigurable digital system.
In 2016 29th Symposium on Integrated Circuits and Systems Design
(SBCCI), pages 1–6, Aug 2016.

[10] S. Carrato, G. Ramponi, S. Marsi, M. Jerian, and L. Tenze. FPGA
implementation of the Lucy-Richardson algorithm for fast space-variant
image deconvolution. In 2015 9th International Symposium on Image
and Signal Processing and Analysis (ISPA), pages 137–142, Sept 2015.

[11] Ze Wang, Kaijian Weng, Zhao Cheng, Luxin Yan, and Jing Guan.
A co-design method for parallel image processing accelerator based
on DSP and FPGA. In MIPPR 2011: Parallel Processing of Images
and Optimization and Medical Imaging Processing, volume 8005, page
800506. International Society for Optics and Photonics, 2011.

[12] Gabriel Prieto Renieblas, Agustı́n Turrero Nogués, Alberto Muñoz
González, Nieves Gómez-León, and Eduardo Guibelalde Del Castillo.
Structural similarity index family for image quality assessment in
radiological images. Journal of medical imaging, 4 3:035501, 2017.

[13] Milica Orlandić and Kjetil Svarstad. An adaptive high-throughput edge
detection filtering system using dynamic partial reconfiguration. Journal
of Real-Time Image Processing, Feb 2018.

[14] Avnet. ZedBoard, Hardware Users Guide. http://zedboard.org/sites/
default/files/documentations/ZedBoard HW UG v2 2.pdf, 2014. [On-
line; accessed 16-December-2018].

[15] (GIC) Grupo de Inteligencia Computacional. Hyperspectral Remote
Sensinf Scenes. http://www.ehu.eus/ccwintco/index.php/Hyperspectral
Remote Sensing Scenes, 2014. [Online; accessed 12-December-2018].


