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Abstract—Sporadic ocean color events with characteristic spec-
tra, in particular algal blooms, call for quick delivery of high-
resolution remote sensing data for further analysis. Motivated by
this, we present the mission design of HYPSO-1, a 6U CubeSat
at 500 km orbit altitude hosting a custom-built pushbroom
hyperspectral imager with wavelengths between 387−801 nm at
bandpass of 3.33 nm and swath width of 70 km. The expected
Signal-to-Noise Ratio is characterized for typical open ocean
water-leaving radiance and can be flexibly increased by pixel bin-
ning. With the goal to enable better than 100 m spatial resolution,
it is shown by geometric principles that the satellite may execute
a slew maneuver to increase the number of overlapping pixels
during a scan. Since generated high-dimensional hyperspectral
data products need to be transmitted over limited space-ground
communications, we have designed a modular FPGA-based on-
board image processing architecture that aims to significantly
reduce the data size without losing important spatial-spectral
information. We justify the concept with a simulated scenario
where HYPSO-1 first collects hyperspectral images of a 40 km
by 40 km coastal area in Norway, and aims to immediately
transfer these to nearby ground stations. With CCSDS123 lossless
compression, it takes about one orbit revolution to obtain the
complete data product when considering the overhead in satellite
bus communications, and less than 10 min without the overhead.
It is shown that even better latency can be achieved with
advanced onboard processing algorithms.

Index Terms—HYPSO-1, hyperspectral imaging, space optics,
onboard processing, ocean color.
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I. INTRODUCTION

HYPERSPECTRAL and multispectral remote sensing are
typically used in the context of monitoring colorful

processes with large spatio-temporal extents. A commonly
observed phenomena of these is chlorophyll, a primary light-
absorbing substance involved in phytoplankton photosynthesis
which may have clear signatures at the water surface [1].
Blooms of phytoplankton have variable coloration and are
often categorized as “red tides”, “green tides” or “brown
tides” with wavelengths between 400 − 700 nm [1], [2],
[3], [4], [5], [6]. They sporadically appear worldwide with
varying biomass concentrations, may last from a few minutes
to several days and cover regions from tens to hundreds of
square kilometers [7]. Sometimes malignant, often identified
as Harmful Algal Blooms (HABs) or cyanobacteria, such
blooms may cause sudden damage to the marine environment,
ecosystems and sustainable food sources [8]. According to [2],
numerous plankton and algae types can be distinguished or
inferred by their photosynthetic pigments and fluorescence,
and hyperspectral data with capability of high spectral res-
olution may reveal the subtle spectral inflections imparted
by specific pigment complements. However, determining the
harmfulness of algae is not easily done from optical remote
sensing alone, and is attributed to in-situ measurements in
the upper water-column [2], [9]. Further challenges include
atmospheric absorption and scattering of light [10], and the
fact that the majority of biomatter typically reside at 10−15 m
below the water surface [2], such that these heterogeneous and
potentially dark targets often demand a combination of larger
space-based optics with high Signal-to-Noise ratio (SNR),
rigorous atmospheric correction schemes and accompanied
real-time in-situ measurements [11], [12].

Traditional Earth Observation (EO) satellites with large
optical systems, several operated by National Aeronautics
and Astronautics Administration (NASA) and European Space
Agency (ESA), are designed to cover the Earth on a global
scale and provide excellent ocean color data with medium
to high spatial resolution [13], [14], but they normally offer
low spectral resolution and revisit times of several days [15].
For example, using data products from Sentinel-3’s Ocean
Color and Land Instrument (OLCI) for detecting cyanobac-
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terial blooms based on pigments such as phycocyanin and
chlorophyll-a can be inaccurate using traditional ground-based
analysis algorithms, unless employing newer algorithms that
utilize band ratios from an alternate set of selected spectral
bands [16]. Providing greater flexibility in namely choosing
more than a hundred spectral bands instead of dozens [17],
hyperspectral remote sensing missions show great promise
in ocean color remote sensing, e.g. [18], [19], [20], [21],
[22], [23], [24], [25], [26]. Yet, many of these stand-alone
systems still lack the operational flexibility and revisit times to
efficiently monitor dynamic areas on-demand [27]. Moreover,
accurate but time-consuming and rigorous data processing
methods are usually performed on ground together with syn-
ergistic analysis of in-situ measurements.

A small-satellite, often categorized as nano- or micro-
satellite, normally has a short lifetime compared to traditional
large satellites but can frequently be substituted with updated
technology and has lower development and production costs
[28]. Given recent advances in sensor technology, miniatur-
ization and availability of commercial-off-the-shelf (COTS)
products, custom-built hyperspectral imagers can now also
be suited for use in nano-satellites [29], [30], [31], [32].
Instead of mapping on the global scale, single-purpose hy-
perspectral imaging small-satellites may focus on observing
smaller dedicated areas more frequently to characterize tem-
poral variation in both the spatial and spectral domains, also
allowing a smaller camera system with relatively narrow Field-
of-View (FoV). Choosing target areas on the sub-mesoscale
or mesoscale, this has the potential enabling small-satellites
to support a network of in-situ assets that may observe or
sample with more detail in the spatial and spectral domains,
e.g. Unmanned Aerial Vehicles (UAVs), Unmanned Surface
Vehicles (USVs), Autonomous Underwater Vehicles (AUVs),
and buoys [8]. To make such a multi-agent network function
efficiently in real-time and reducing the operational costs, the
remote sensing data must be quickly downloaded to keep
validity in the highly time-varying information.

It is well-known that hyperspectral imagers generate large
amounts of data that consequently take long time to transfer
to ground due to limitations in bandwidth, coverage to ground
stations and onboard computational resources [33], [27]. Re-
duction in data size onboard is crucial for satisfying real-
time requirements but can also be difficult due to the limited
power available per orbit for a small-satellite. Nevertheless,
onboard processing has advanced significantly for remote
sensing applications [34], in particular Field-Programmable
Gate Arrays (FPGAs) that are reconfigurable and have high
computational speed and low power consumption [35], [36].
Enabling algorithm parallelism, a modular FPGA-based image
processing architecture allows for custom algorithms or image
processing pipelines. Beyond standard losslessly compressed
data, tailored end data products may contain only extracted
spatial-spectral information generated from dimensionality
reduction, target detection or classification [37], [38]. The
significantly reduced data can therefore grant shorter waiting
time between image acquisition to complete data download
and be used for immediate utilization in real-time applications,
e.g. for in-situ measurements or supporting an algal bloom

warning systems [6], [39], [40].
With the goal to support environmental monitoring and

the ocean color community by providing tailored hyperspec-
tral data products with low latency, we present the mission
design for the upcoming HYPer-spectral Smallsat for ocean
Observation (HYPSO-1) developed at the Norwegian Uni-
versity of Science and Technology (NTNU). This paper is
organized as follows. Section II describes the ocean color
remote sensing needs that motivate the choice of imager, key
remote sensing capabilities, and the HYPSO-1 Concept of
Operations (CONOPS). Section III presents the design and
performance of the custom pushbroom hyperspectral imager
payload. Section IV describes our remote sensing approach
supported by expected results from simulations involving a
slew maneuver technique to enhance the spatial resolution in
the image. In Section V, we present HYPSO-1, a 6U CubeSat,
with its subsystems and power budget for nominal imag-
ing, processing and downlink operations. In Section VI, we
describe the chosen FPGA-based onboard image processing
pipelines that shall deliver custom data products, provide a
survey of potential onboard implementations of more advanced
algorithms, and justify the HYPSO-1 mission feasibility with
corresponding data latency for chosen imaging modes and the
user-attuned data products. Finally, conclusions are provided
in Section VII.

II. MISSION DESIGN

A. Objectives

The mission objectives of the HYPSO-1 are to monitor the
spatio-temporal extent of ocean color events in the visual and
near-infrared (VIS-NIR) wavelengths between 400− 800 nm;
and to infer phytoplankton functional groups. Key user needs
in the ocean color remote sensing are:

1) Images should have spatial resolution better than 30 −
100 m per pixel [15], [41];

2) Raw hyperspectral data should have spectral resolution
of about 5 nm for VIS-NIR wavelengths [15], [41];

3) The imager’s SNR at Top of Atmosphere (ToA) should
be greater than 400 in visual wavelengths for open ocean
water [42], and atmospherically corrected SNR of water-
leaving signals should be between 40− 100 [43];

4) Data latency should be less than 1 hr [44];
5) Revisit times to dedicated areas of interest should be

3− 72 hrs [44], [45].
Since HYPSO-1 is a single small-satellite, but the first in

a prospective constellation, we focus on working towards the
recommendations 1), 2), 3) and 4).

B. Image Acquisition Basics

Whereas several types of spectrometers can be integrated on
aerial or space platforms [46], the passive pushbroom imager
design is an attractive choice with good SNR [47], [48], [49].
Use of COTS components have also made this type of design
more affordable, accessible and flexible [29], [30].

With the scan direction oriented towards the velocity di-
rection, a pushbroom imager sequentially scans several lines,
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Nx, each having instantaneous pixels, Ny and Nλ, forming a
hyperspectral datacube shown in Fig. 1. Ny is the number of
spatial pixels perpendicular to the scan direction and Nλ is the
number of pixels along the spectral dimension. The horizontal
and vertical components of the FoV are εw and εh respectively.
The time elapsed between two consecutive lines, or frames, is
expressed by the integration time ∆t = 1/FPS = τ + δt
where FPS is the frame rate, τ is the camera exposure time
and δt is the read-out time.

High spectral resolution is required for discrimination of
fine spectral features in the water-leaving signals, and high
spatial resolution is desired to reduce the effects of spectral
mixing or blur in the image pixels. Mounted on a satellite
moving at high orbital speed, the drawback is strictly speaking
a low spatial resolution along the scan direction. A work-
around is to overlap more frames by tilting the imager
backwards as it translates forward, similar to the method
described in [50]. This results in an increased number partially
overlapping pixels which can be utilized to enhance SNR
or spatial resolution as trade-offs using image restoration
techniques such as deconvolution or super-resolution [51].
For clarity, the Euclidean distance on ground between center
pixels of two consecutive frames is taken to be the Sequential
Ground Sampling Distance (SGSD) not to be confused with
the commonly defined Ground Sampling Distance (GSD)
between adjacent pixels in an instantaneous frame.

Fig. 1. Illustration of a pushbroom hyperspectral imager collecting Nx frames
with Nλ and Ny pixels.

C. Concept of Operations
The overall mission utility and performance in HYPSO-1

is mainly engineered based on trade-offs in spatial resolution,
spectral resolution, SNR, data size and latency, coverage to
ground stations and likely locations for observations. HYPSO-
1 will be launched to a 500 km altitude Sun-Synchronous
Orbit (SSO) with Local Time of Descending Node (LTDN)
at 10:00 AM, which grants early-day access to observe the
Norwegian coastline during Spring and Summer seasons while
avoiding detrimental sun-glint effects [52]. The HYPSO-1
mission concept of operations (CONOPS), illustrated in Fig.
2, enables five main capabilities:

1) After receiving telecommands and updates (e.g. camera
settings) that are uploaded from a nearby ground station,
HYPSO-1 is scheduled to orient its hyperspectral imager
to start scanning a pre-defined area size;

2) HYPSO-1 executes a single-axis slew maneuver so that
the imager’s footprint slowly rotates backwards with re-
spect to the scan direction. At a high camera frame rate,
the goal is to enable a SGSD better than 100 m/pixel.

3) After imaging, the hyperspectral images are processed
onboard immediately to reduce their data size and speed-
ing up the download on ground;

4) For quick downlink after observing coastal regions in
Norway, the selected ground station network includes
S-band ground stations at NTNU Trondheim, KSAT
Svalbard, Norway, and KSAT Puertollano, Spain;

5) In addition, the Mission Control Center at NTNU op-
erates several supporting robotic assets, such as UAVs,
ASVs and AUVs, that may collect in-situ data if within
range of the observed area.

D. System Capabilities
1) Imaging Modes: The hyperspectral imager has three

main imaging configurations:
• High-resolution mode: enables high image resolution

with narrow-FoV and high frame rate settings;
• Wide FoV mode: enables a wider swath but at coarser

spatial resolution;
• Diagnostics mode: gives raw data with full sensor res-

olution to be mainly used for in-orbit calibration and
characterization.

2) Attitude Determination & Control System: To obtain a
spatial resolution better than 100 m requires a precise attitude
determination and control system (ADCS) [31]. Throughout
image acquisition for a satellite that is pointing or maneu-
vering, the attitude sensor noise and actuator inaccuracies
(e.g. reaction wheel jittering) will contribute to a non-uniform
distribution of images across the observed scene. The attitude
errors are categorized as attitude control and knowledge accu-
racies, bearing in mind that performance of latter affects the
former. For consistent image registration, or simply knowing
the location of each pixel to the accuracy of 100 m on ground,
e.g. geo-referencing, then good performance is needed for
attitude knowledge accuracy, orbit position accuracy, and time
synchronization between the captured images and attitude data.

3) On-board Image Processing: The image processing ar-
chitecture should be modular by design with the goal to ease
satellite operations and provide tailored data to end users at
a low data latency. To make such data products useful, the
high-level goals are to:
• Reduce hyperspectral data size onboard to improve data

latency, by lossless compression at minimum;
• Extract the spatial and spectral information in water-

leaving signals, by e.g. dimensionality reduction, target
detection or classification;

• Register images and utilize the obtained SGSD to achieve
better than 100 m/pixel image resolution using im-
age restoration methods, e.g. deconvolution or super-
resolution;
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Fig. 2. CONOPS where 1) HYPSO-1 receives uplinked configurations from a nearby ground station; 2) acquires hyperspectral images for a short duration
under a slew maneuver; 3) processes the images onboard immediately; 4) downlinks the data to nearby ground stations; and 5) in-situ assets in the vicinity
may be deployed for closer investigation at the observed scene.

• Transform pixel indices to geodetic latitude and longitude
by geo-referencing such that these coordinates can be
used to guide in-situ agents towards interesting locations;

In the commissioning phase, the hyperspectral data products
shall be analyzed in synergy with other available remote sens-
ing data and in-situ measurements. Modeling and simulation
tools shall also provide supporting information on atmospheric
correction and the radiometric, spectral and spatial properties
of a simulated ocean color event [53], [54].

III. HYPERSPECTRAL IMAGER DESIGN

A. Optics

An optical diagram of the instrument with its cross-section
parallel to the refraction axis is shown in Fig. 3, [48]. The
labelled components are: (i) front lens with aperture diameter
D0 and focal length F0; (ii) entrance slit with width wslit and
height hslit; (iii) collimator lens with aperture diameter D1 and
focal length F1; (iv) grating receiving incoming light at angle
α = 0◦ and diffracts the light at angle β measured from the
grating normal; (v) detector lens with aperture diameter D2

and focal length F2; and finally (vi) is the image sensor. The
FoV components along and perpendicular to the scan-direction
are expressed as

tan
(εw

2

)
=
wslit

2F0
, (1a)

tan
(εh

2

)
=
hslit

2F0
. (1b)

Assuming no loss of transmitting light from front lens to
image sensor, the geometric etendue is expressed as

G = π
D2

0

4F 2
0

cos(β)wdhd, (2)

where the magnification of the entrance slit onto the image
sensor are

hd = hslit
F2

F1
, (3a)

wd =
wslitF2

cos(β)F1
, (3b)

and β is the diffraction angle for the center wavelength [55].
As shown in Fig. 4, the amount of illuminated pixels of
projected slit width and height onto the image sensor are

Nh =
hd

∆py
, (4a)

Nw =
wd

∆pλ
, (4b)

where ∆pλ and ∆py are the pixel width and height, respec-
tively.

The theoretical bandpass for the optical system, or the
recorded Full Width at Half Maximum (FWHM) of a
monochromatic spectral line, indicates how well adjacent
spectral lines are resolved. Assuming no degradation due
to aberrations and diffraction, the spectral bandpass may be
approximated as

∆λ ≈ gwslit

κF1
, (5)

where g is the groove spacing of the grating and κ is the
spectral order [55].

B. Payload Flight Model

HYPSO-1’s hyperspectral imager payload is mainly built
with COTS products from Thorlabs and Edmund Optics and a
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Fig. 3. Optical diagram of the cross-section of the pushbroom hyperspectral imager. The light is focused into a slit, collimated into a grating which then
diffracts the light into an image sensor plane.

Fig. 4. Illustration of the projected slit onto the image sensor plane with hd
and wd dimensions with the white region corresponding to one spectral band.
The camera’s mechanical layout may block some of the light as indicated by
the dark gray regions. In practice, weaker signals can be expected in the pixels
at the edges compared to central pixels since they are partially illuminated.

few custom machined parts [29], shown in Fig. 5. The imager
is designed to provide a spectral range of at least 400−800 nm
and theoretical spectral bandpass of 3.33 nm. The focal length
for each lens should be equal to maximize the light throughput,
but to avoid detrimental stray light effects the F-numbers are
set to F0/# = F1/# = 2.8 and F2/# = 2. The instrument’s
key specifications are given in Table I.

Fig. 5. Hyperspectral imager payload assembled for CubeSat integration

A SONY IMX249 image sensor is mounted in an industrial
camera head from The Imaging Development Systems Europe

GmbH. It has 1936 × 1216 pixels with reported well depth
of about 33022 e− per pixel equivalent to maximum SNR of
approximately 181.6. The maximum FPS is limited by the
data throughput, number of binning operations, subsampling
and Area of Interest (AoI), where latter is the selected number
of pixels in a custom image sensor window.

TABLE I
HYPERSPECTRAL IMAGER SPECIFICATIONS

Parameter Value
Dimensions 200 mm× 65 mm× 65 mm
Weight 1.6 kg
FoV εw × εh 0.0564◦ × 7.8826◦

F0 = F1 = F2 50 mm
F0/# = F1/# 2.8
F2/# 2
D0 = D1 17.9 mm
D2 25 mm
Slit width wslit 50 µm
Slit height hslit 7 mm
Optical efficiency η0 = η1 = η2 0.8
Grating efficiency ηG @500 nm 0.73
Spectral order κ 1
Groove spacing g 3333.33 nm
Diffraction angle β 10.37◦
Pixel size ∆pλ = ∆py 5.86 µm
Usable sensor resolution 1936× 1194 pixels
Quantum efficiency ηQ @500 nm 0.77
Full spectral range 220− 967 nm
Spectral bands at full resolution at least 215
Theoretical bandpass ∆λ 3.33 nm
Dark current idark 0.95 e−/s
Read-out noise Cread-out 6.93 e−

Quantization noise Cquant 2.33 e−

Max. SNR per pixel (unbinned) 181.6 (45.2 dB)
ADC bit-depth b 12 bits

C. Characterizing Signal-to-Noise Ratio

SNR is a measure of the instrument’s sensitivity to light
and ability to resolve spectral signatures that are subject to
correlated signal noise and uncorrelated image sensor noise.
A high SNR is needed for better radiometric accuracy and
discriminating the dimmer optical constituents in water scenes
for in-orbit calibration, atmospheric correction and algorithms
such as target detection or classification. However, increasing
SNR, either by optical design or image processing, is a trade-
off with coarser spatial resolution or spectral resolution.
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The incoming light reaching the imager’s front lens can
be represented by the total radiance at Top-of-Atmosphere
(ToA), comprised of several components that are functions
of wavelength and viewing direction [56], [57],

LToA
tot = LToA

atm + tdirLsg + tdiffLwc + tdiffLwater (6)

where LToA
atm (λ) is the combined radiance of Rayleigh, aerosol

and Rayleigh-aerosol interaction scattering including sky back-
ground reflection and scattering, and Lsg(λ), Lwc(λ) and
Lwater(λ) are the surface-based specular reflection of sun
glint radiance, sun and sky radiance reflected by whitecaps
and foam, and the water-leaving radiance, respectively. The
terms tdir(λ, γ;H) and tdiff(λ, γ;H) are the direct and diffuse
transmittances along the optical path governed by wavelength,
viewing angle γ and altitude above the surface H .

Generalizing for a reference signal component to be de-
tected at ToA, LToA

ref (λ), this can be a chosen term of interest
from (6), i.e. the total ToA radiance LToA

ref (λ) = LToA
tot (λ) or a

component thereof, i.e. the water-leaving radiance LToA
ref (λ) =

LToA
water(λ). The corresponding photon flux per spectral bandpass

reaching the image sensor is

Φ̇ToA
ref = LToA

ref η0η1ηGη2Gλ
∆λ

hplanckc
, (7)

where LToA
ref (λ) is the reference radiance, η0, η1, η2 are the

optical efficiencies of the front, collimator and detector lenses
respectively, ηG(λ) is the grating efficiency, c is the speed
of light, and hplanck = 6.62607015 × 10−34 Js is Planck’s
constant. The count of photon-electrons per pixel is

Cref =
ηQΦ̇ToA

ref τ

NwNh
, (8)

where ηQ(λ) is the quantum efficiency of the image sensor.
Assuming that Cref(λ) has a Poisson probability distribution
[58], [59], the SNR for a signal at ToA can be expressed as

SNRref,[1,1] =
Cref√

Cref + Cdark + C2
read-out + C2

quant

, (9)

where Cdark = idark∆t has a Poisson probability distribution,
while Cread-out and Cquant have Gaussian probability distri-
bution with zero mean [58], [59]. The average shot noise
registered due to the dark current idark is idark∆t, Cread-out
is the standard deviation of electrons in the sensor read-out
circuits, and Cquant = Cmax/(2

b
√

12) is the standard deviation
of quantization noise where Cmax is the well depth and b is
the Analog-to-Digital Converter (ADC) bit depth. SNR of less
than 1 results in non-resolvable features fully obscured by
noise. On the other hand, a high SNR per pixel is limited
by the image sensor’s saturation capacity or well depth.

1) Binning: With the ability to bin pixels on the image
sensor, photon-electrons can be gathered from adjacent pixels
to create a merged pixel with higher SNR as the signal synthet-
ically increases proportionally with the square root of number
of binning operations. To increase the SNR without losing
spectral resolution, one may fully bin the number of pixels
covered by the spectral bandpass. Therefore, Bλ = dNwe
pixels can be binned where Bλ is the number of binning

operations in the spectral direction and d·e indicates rounding
up to nearest integer. This results in the effective SNR to be
SNRref,[dNwe,1] ≈

√
NwSNRref,[1,1]. Similarly, By binning

operations in the instantaneous spatial direction along hd, also
results in higher SNR but at the cost of spatial resolution.

2) SNR of total ToA radiance: Atmospheric effects signif-
icantly augment the light in the imager’s optical path, such
that the water-leaving radiance at the surface, Lwater, may
only constitute a mere 10% of the total ToA radiance LToA

tot
[60], [61]. The total radiance at ToA for open ocean water
is typically between 0.005 − 0.06 Wm−2sr−1nm−1 in the
spectral range of 400 − 800 nm with strongest signals in the
blue-green wavelengths and decreasing towards the red part of
the spectrum [62]. Assuming LToA

tot = 0.042 Wm−2sr−1nm−1

at 500 nm based on [62], and setting τ = 51.6 ms, this
would amount to SNRtotal,[1,1] ≈ 133 and SNRtotal,[9,1] ≈
392 if binning of Bλ = 9 is used. For Bλ = 18, then
SNRtotal,[18,1] ≈ 554 at the cost of spectral resolution
being worse than ∆λ = 6.67 nm. Noteworthy, a radiance
of LToA

tot = 0.0725 Wm−2sr−1nm−1 at 525 nm would give
SNRtotal,[1,1] ≈ 182 which is above the saturation capacity
at SNR of 181.6. If pixels that are not binned saturate at
wavelengths of interest, then one could decrease the sensor’s
exposure time τ .

3) SNR of open ocean water: To estimate the imager’s
SNRwater, we have used publicly available and calibrated
water-leaving radiance measurements from the Marine Op-
tical BuoY (MOBY) deployment number 267 off the coast
of Hawaii [63], time-stamped at 21:11:38 GMT on 3 July
2019. The data on that particular day are typical for open
ocean water which is considered to be a good example for
a scene observed by HYPSO-1, even though the signals are
weak towards the red part of the spectrum. Fig. 6 shows
the MOBY water-leaving radiance measurements, Lwater(λ),
and the simulated water-leaving radiance at ToA, LToA

water(λ) =
tdiff(λ, γ,H)Lwater(λ). The MOBY measurements are fitted
with a spline curve to match the theoretical bandpass of the
hyperspectral imager in the wavelength range of 400−750 nm.
The water-leaving signal reaching ToA is assumed to be
weakened by only the Rayleigh optical thickness part of the
transmittance model, based on [64]. This assumption does
not include other contributing atmospheric effects that par-
tially govern LToA

tot , e.g. Rayleigh scattering, aerosol scattering,
Rayleigh-aerosol interactions and sun reflection [60]. A more
realistic atmosphere can be modeled for complete details.

Simulated using (7), (8) and (9), Fig. 7 shows the estimated
SNRwater at ToA in the 400 − 750 nm spectral range for
the hyperspectral imager sensing the water-leaving radiance
LToA

ref = LToA
water with γ = 0◦ and τ = 51.6 ms. The

target SNR at a chosen wavelength of 500 nm increases
from SNRwater,[1,1] = 45.8 to SNRwater,[9,1] = 134.8 with
Bλ = 9, to SNRwater,[18,1] = 190.6 with Bλ = 18 and to
SNRwater,[26,1] = 233.5 with Bλ = 26. With no binning and
at Bλ = 9 then ∆λ = 3.33 nm while Bλ = 18 and Bλ = 26
result in ∆λ = 6.67 nm and ∆λ = 10 nm, respectively.
The estimated performance at Bλ = 9 accommodates the
recommended SNR of at least 40 − 100 for water-leaving
signals [43]. Moreover, the effective image SNR in a complete
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Fig. 6. Water-leaving radiance, Lwater, measured by MOBY267 and estimated
water-leaving radiance at ToA, LToA

water, for different viewing angles γ.
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Fig. 7. SNR per pixel for the estimated LToA
water component with exposure time

τ = 51.6 ms and a selected number of binning operations.

datacube can be further increased given that spatial pixels
overlap over the same local scenes.

IV. REMOTE SENSING APPROACH

A. Attitude Definition

Shown in Fig. 8, the orthonormal vectors x̂b, ŷb and ẑb
define the body frame and are aligned with the satellite’s
principal axes of inertia. The hyperspectral imager is assumed
to be mounted with its optical axis along ẑb, the slit height hslit
aligned with ŷb and the slit width wslit aligned with x̂b. The
satellite’s orbit frame is defined by x̂o being aligned with the
velocity vector, ŷo points towards the negative orbit normal
vector, and ẑo is the nadir unit vector aligned with the opposite
inertial position vector as seen in the Earth-Centered-Inertial
(ECI) frame. The rotation of the body relative to the orbit
frame are represented by Euler angles φ, θ and ψ which are
the roll, pitch and yaw angles with φ = θ = ψ = 0◦ at nadir.
Attitude errors from references φref, θref, ψref are δφ = φref−φ,
δθ = θref−θ, δψ = ψref−ψ. For simplicity, it is assumed that
the Earth is spherical such that the nadir vector ẑo coincides

with the line that defines the local altitude H . Furthermore,
ωx, ωy , and ωz are the angular velocities of the satellite body
frame relative to the orbit frame.

Fig. 8. Observation geometry at altitude H covering the orbital distance
so while translating at speed vo and slewing with angular velocity ωy . The
objective is to acquire images along the ground distance sg from starting
angle θ0 to final angle θf . The starting and final instantaneous along-track
footprints are xp(t0) and xp(tf ). The axes ŷb and ŷo point out of the paper.

B. Instantaneous Resolution

Using (1a) and (1b), the instantaneous footprint of the
hyperspectral imager, expressed in horizontal and vertical
components, are

Pw = H secφ

(
tan

(
θ +

εw
2

)
− tan

(
θ − εw

2

))
, (10a)

Ph = H sec θ

(
tan

(
φ+

εh
2

)
− tan

(
φ− εh

2

))
, (10b)

which are transformed to along-track and cross-track compo-
nents of a central pixel as

xp , cos(ψ)Pw + sin(ψ)
Ph
Ny

, (11a)

yp , cos(ψ)
Ph
Ny
− sin(ψ)Pw. (11b)

In reality, ground-projected pixels near the edge of the swath
are elongated compared to the central pixel. Along with effects
from Earth curvature, these distortions are known as “bowtie
effect” which can be corrected in post-processing [65], [66].
We note that the ground pixel size is taken to be relatively
small, i.e. on a meter-scale, and pixel elongation and curvature
can be ignored for a combination of high frame rate and
narrow FoV.

C. Spatial Resolution

Now adding translational and rotational motion effects to
the instantaneous footprint in (11a) and (11b) during exposure
time τ , the along-track and cross-track spatial resolution in a
pixel are

∆x = xp + vp,xτ, (12a)
∆y = yp + vp,yτ, (12b)
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where vp,x and vp,y are the along-track and cross-track speeds
of the pixels defined as

vp,x , vo + θ̇H − ψ̇H tan(φ), (13a)

vp,y , −φ̇H + ψ̇H tan(θ), (13b)

where vo is the satellite’s orbital speed. Shown in Fig. 9, the

Fig. 9. A pixel moving by the distance SGSD from time t0 to t1.

SGSD may be defined as the distance a reference pixel has
moved during integration time ∆t, expressed in along-track
and cross-track components as

x̃ , vp,x∆t, (14a)

ỹ , vp,y∆t. (14b)

The SGSD determines the amount of overlap of two sequential
frames. Since xp is significantly larger than yp, and if the
scan direction is aligned with the along-track direction at high
orbital speed, then it is preferred to slew about the ŷo axis to
enable better along-track spatial resolution. Noting from (13a)
and (13b), the required angular velocity of the satellite ωy may
be obtained from the desired x̃ or vice versa.

D. Image Acquisition Strategy

Consider the ground length sg to be uniformly scanned
during time ∆T = tf − t0 where the satellite rotates from
starting to final pitch angles θ(t0) = θ0 and θ(tf ) = θf , as
shown in Fig. 8. Assuming a local linear track for relatively
short ∆T and small sg , the final pitch angle can be set to
θf = −θ0 such that xp(t0) = xp(tf ). Furthermore, it is
assumed that ωx = ωz = 0◦/s and φ = ψ = 0◦ such that
ωy = θ̇ [67].

Setting the final pitch angle to θf = −θ0, the covered orbit
track distance can be calculated as

so = sg + 2H tan

(
θ0 −

εw
2

)
, (15)

where for a constant orbital speed vo, the total time required
for the slew maneuver to go from θ0 to −θ0 is

∆T =
so
vo
, (16)

which gives the constant reference angular velocity

ωref,y = θ̇ref =
∆θ

∆T
= − 2θ0

∆T
. (17)

For the case of a single-axis slew maneuver about the ŷo
axis, Fig. 10 shows the required angular velocity ωref,y at H =
500 km as a function of chosen θ0 = −θf for different sg .
Higher altitude or longer sg demands slower rotation to obtain
a constant SGSD.
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Fig. 10. Required angular vielocity ωref,y vs. pitch angles θ0 = −θf for
uniformly imaging different ground lengths sg at H = 500 km.

E. Simulation Results

1) Resolution for Nadir-pointing: With the scan direction
aligned to along-track, the instantaneous along-track and cross-
track ground resolution at nadir are xp = 500 m and yp =
58.6 m respectively. It takes ∆T = 5.2 s to scan the ground
distance sg = 40.08 km. Using the specifications in Table I
and camera settings in Table II, the obtained spatial resolution
becomes ∆x = 892.5 m, ∆y = 58.6 m with a swath
width of Ph = 40.08 km. The along-track SGSD becomes
x̃ = 422.9 m, meaning that 3 frames partially overlap.

TABLE II
SIMULATION PARAMETERS

Parameter Value
Frame rate FPS 18
Camera integration time ∆t 55.6 ms
Camera exposure time τ 51.6 ms
Camera read-out time δt 4 ms
Target length sg 40.08 km
Altitude H 500 km
Satellite speed vo 7.61 km/s
Roll angle φ 0◦

Yaw angle ψ 0◦

2) Resolution for Slew Maneuver: Assuming ωy = ωref,y
where no attitude errors are present, and using the parameters
in Tables I and II, Figs. 11 and 12 show how spatial resolution
varies with slew maneuvers starting from θ0 at 0◦, 10◦, 20◦

and 30◦ and ending at θf = −θ0. For these configurations,
Table III shows the corresponding angular velocities required,
observation time and along-track SGSD. Choosing θ0 = 20◦

and sg = 40.08 km, the satellite would have to slew at
angular velocity of ωy = −0.754◦/s for 53.1 s to obtain a
constant along-track SGSD of 57.6 m. The along-track spatial
resolution varies between ∆x = 619.6 m at θ = 20◦ to a
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minimum of ∆x = 553.4 m at nadir, while the cross-track
spatial resolution varies between ∆y = 62.4 m at θ = 20◦ to
a minimum of ∆y = 58.6 m at nadir. With x̃ = 57.6 m this
means there will be at least 10 frames that partially overlap in
the along-track direction. With this many overlapped spatial
pixels of the same scene, the effective SNR in the final image
may theoretically increase with a factor of up to

√
10 times, i.e.

83% more than for a nadir-pointing scan. However, in practice,
the further increase in SNR can be lower due to trade-off with
desired high spatial resolution when using image restoration
techniques.

3) Attitude Errors: Precise attitude control accuracy is
needed for directly obtaining the desired SGSD between
two sequential frames at any time during image acquisition.
Referring to the image resolution requirement of less than
100 m as discussed in Section II, and using (14a) and (13a),
we have the requirement for angular velocity accuracy being

|δθ̇c| <
|x∗ − x̃|
H∆t

− vo
H

+ ψ̇ tan(φ)− θ̇ref, (18)

where x∗ is the desired upper limit of SGSD between two
frames captured after each other. It can be assumed that
the term ψ̇ tan(φ) ≈ 0 for small φ and ψ. Using the
parameters in Table II, and choosing angular velocity of
θ̇ref = −0.754 deg/s, along-track SGSD of x̃ = 57.6 m and
setting x∗ = 100 m, the angular velocity errors must be less
than 0.094 deg/s throughout image acquisition.

The attitude error problem can be relaxed to rather focus
on obtaining sufficient attitude knowledge for the purpose of
consistent image registration and geo-referencing. Assuming
low uncertainty in orbit position and a precise on-board
time-synchronization, then for pixel-to-pixel distance errors to
remain within the bound of ±100 m, using (1a) and (11a), the
attitude knowledge error requirement is

|δθk| < tan−1
(
|x∗|

H sec(φ)
+ tan(θmax)

)
− θmax, (19)

where θmax is the largest desired angle during image acquisi-
tion. Given a desired SGSD of x̃ = 57.6 m at θmax = 20◦ and
φ = 0◦, using (19) and assuming sec(φ) ≈ 1, the required
attitude knowledge accuracy must be better than 0.01◦. Table
III shows the required attitude knowledge accuracy for other
slew maneuver configurations.

TABLE III
SLEW MANEUVER RESULTS FOR sg = 40.08 km AND FPS = 18

Configuration θ0 [◦] ωy [◦/s] ∆T [s] x̃ [m] |δθk| [◦]
1 0 0 5.2 422.9 0.0088
2 10 -0.704 28.4 81.8 0.0111
3 20 -0.754 53.1 57.6 0.0102
4 30 -0.740 81.1 64.3 0.0086

V. HYPSO-1 SYSTEM

A. Satellite Bus

The hyperspectral imager was chosen to be adapted to
the Multipurpose 6U Platform (M6P), a commercially avail-
able spacecraft bus provided by NanoAvionics, with mass
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Fig. 11. Along-track spatial resolution for chosen configurations of pitch
angles θ0 = −θf and angular velocities ωy .
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Fig. 12. Cross-track spatial resolution for chosen configurations of pitch
angles θ0 = −θf and angular velocities ωy .

of approximately 6.8 kg when fully integrated. Among the
important subsystems in M6P are Flight Computer (FC) for
onboard data handling and ADCS functions, SatLab Global
Navigation Satellite System (GNSS) for orbit determination
and time synchronization, Electrical Power System (EPS),
Ultra-High-Frequency (UHF) radio for basic space-ground
communications, and Payload Controller (PC) working as
storage device and router between the payload and the satel-
lite bus. For internal communications, the spacecraft uses
the CubeSat Space Protocol (CSP) over a Controller Area
Network (CAN), where each subsystem is a network node
with dedicated CSP address. The M6P has 16 body-mounted
triple junction Gallium Arsenide solar cells and six Lithium-
Ion batteries with total energy capacity of 64.9 Wh.

B. Dedicated Subsystems

To fulfill the user needs and mission CONOPS described in
Section II, HYPSO-1 is further equipped with:
• A Nano Star Tracker ST-1 [68] and Sensonor STIM 210

Inertial Measurment Unit (IMU) [69] used for precise
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Fig. 13. Computer-Aided Drawing (CAD) model of HYPSO-1 with its top
and front panels removed showing the hyperspectral imager in the center,
RGB camera to its left and star-tracker to its right.

attitude estimation during imaging. To ensure sufficient
settling time after initialization, the sensors are turned on
for at least 5 min prior to imaging. When images will not
be taken, then six sun sensors, three magnetometers and
three gyroscopes are used instead which provide coarser
attitude knowledge but consume less power;

• Four reaction wheels used for attitude control that provide
up to 3.2 mNm torque each, where three are placed
orthogonally along the body axes and the fourth is tilted
at an angle of 54.7◦. Two magnetorquers are placed along
each body axis for reaction wheel momentum dumping;

• An IDS UI-125x RGB camera with 6 mm F/1.4 Ci se-
ries fixed lens providing a footprint of 770 km×540 km
and spatial resolution of approximately 500 m. Its main
purpose is to support and validate hyperspectral images
in the spatial domain [70];

• A 2.4 GHz IQ Spacecom S-band Transceiver providing
usable data rate of 1 Mbps for downlinking payload data;

• An Onboard Processing Unit (OPU) hosting a Zynq-
7030 Xilinx PicoZed System-on-a-Chip (SoC) with flight
heritage [34]. It consists of two core ARM processors and
a Field Programmable Gate Array (FPGA) dedicated for
onboard image processing. The OPU allows for in-orbit
updates of both software and FPGA hardware reconfig-
urations for uploaded algorithms. Larger data sizes can
be buffered from the OPU to the PC over CAN before
downlinking over S-band radio, or smaller amounts of
data can be downloaded directly from the OPU. Buffering
data to the PC enables full utilization of the S-band
data rate, and removes the need for keeping the OPU
turned on for longer than necessary. Power and data-line
distribution to the hyperspectral and RGB cameras are
granted through a custom break-outboard with PicoZed
interfaces. Furthermore, the OPU hosts a SD-card with
8 GB storage capacity.

C. Power Budget

M6P’s solar arrays generate approximately 11.65 W during
a period of 58.9 min in sunlight out of a total orbital period of
94.6 min. Determining if energy is sufficient during burden-
some operations, the power budget should assume a scenario

where image acquisition, processing and downlink all happen
in the same pass during sunlight. This scenario is shown in
Fig. 14 for HYPSO-1 passing over a target area in Lofoten,
Norway, and the selected ground stations at NTNU Trondheim,
KSAT Svalbard and KSAT Spain.

Fig. 14. HYPSO-1 in SSO at 10:25:00 on 28 May 2022. Selected ground
stations are marked in white circles. Previous, current and succeeding ground
tracks are indicated by dashed lines.

TABLE IV
HYPSO-1 POWER BUDGET

Subsystem Power (W) DC (%) Power Used (W)
Hyperspectral imager 3.675 1.09 0.040
RGB camera 3.375 0.55 0.020
OPU imaging 4.234 1.09 0.046
OPU image processing 4.234 6.69 0.283
OPU-PC transfer 4.234 35.33 1.496
ADCS cruise 3.441 94.72 3.259
ADCS precise 6.331 5.28 0.334
S-band radio RX 4.813 10.57 0.509
S-band radio TX+RX 12.201 10.57 1.290
Other 1.530 100 1.530
Total (+10% margin) 9.688
Generated (effective) 9.861
Remaining +0.174

Table IV shows the power budget with 5% component mar-
gin and the corresponding subsystem duty cycles (DC) that in-
cludes booting up. Battery input and output efficiencies are as-
sumed 92% each. The power consumed in OPU, ADCS and S-
band radio are separated into more than one operational mode,
while “Other” denotes the collective power consumption by
FC, EPS, PC and internal bus communications. Naturally,
peaks in power are expected during the image acquisition,
image processing and downlink. “ADCS precise” indicates
preparing and executing the slew maneuver during image
acquisition when both the IMU and star-tracker are active,
consuming up to 1.5 W each. Adding a 10% system margin
results in remaining power of about 174 mW. Enforcing the
power budget to remain safe and positive, the allowed duration
is set to maximum 6.33 min for onboard image processing
and 33.42 min for transferring data from OPU to PC through



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. X, FEBRUARY 2021 11

CAN. Allowed duration of data transmission through S-band
radio is set to 10 min which enables downlinking up to 75 MB
of data per orbit.

VI. ONBOARD IMAGE PROCESSING ARCHITECTURE

A. Overview

The FPGA-based image processing algorithms on the OPU
are key to enable faster download and distribution of data
while at the same time relieving HYPSO-1’s power budget.
The idea behind the image processing architecture is to al-
low for modular arrangement of algorithms, or pipelines, as
illustrated in Fig. 15. The minimal, dimensionality reduction,
target detection, and classification on-board image process-
ing pipelines (respectively named MOBIP, DROBIP, TOBIP
and COBIP) are designed to generate tailored data products
depending on the particular need of the user or operator.
All pipelines include image acquisition, time-stamping and
binning prior to image processing. It is critical that also
satellite and payload telemetry and any other relevant metadata
are downlinked together with the processed images, including
ADCS and orbit position data collected during image acquisi-
tion. Table V shows the size reduction and processing speeds
for the suggested algorithms to be employed in the architec-
ture. ”Bands/Components” are referred to as spectral bands
for raw data and MOBIP, extracted components for DROBIP,
a probability map of detected target spectral signatures for
TOBIP, and a layer containing classes of spectra for COBIP.
A raw hyperspectral datacube of 956× 684 spatial pixels and
1080 spectral pixels binned by a factor of Bλ = 9 times is
considered as the starting point for further processing. The
data size reduction and processing speed estimates are based
on performance reported on state-of-the-art image processing
algorithms that have been used on hyperspectral data of
similar sizes. Details related to occupation, execution time,
operating frequency and latency of the following FPGA-based
algorithms can be found in the respective literature on their
implementation.

B. Minimal on-board image processing

MOBIP consists of the CCSDS123v1 lossless compression
algorithm [71], applied after image acquisition, time-stamping
and binning. CCSDS123v1 proposed in [72], [73] offers a
measured FPGA core speed of up to 9984 Mbps on HYPSO-
1’s Zynq-7030 Xilinx PicoZed. With the raw binned image
as starting point, a data compression of at least 55.6% is
measured as shown in Table V, i.e. a reduction factor of 2.25
times. Without loss of spatial or spectral information, this data
product can be independently processed and analyzed further
on ground by any user. Furthermore, the CubeDMA, a Direct
Memory Access (DMA) solution, is built in the FPGA to
ensure efficient stream of hyperspectral images by excluding
the Central Processing Unit (CPU) from its critical path of
transfer and establishing direct communication between the
memory and the dedicated CCSDS123v1 processing core [74].

C. Onboard image processing for tailored data

Given the in-orbit reconfigurability of the FPGA, several
suitable algorithms that can be used in DROBIP, TOBIP,
COBIP are described here. Some are demonstrated as FPGA-
implementations or software/hardware co-designs in relevant
hardware, and a few algorithms run in software that need
further development for optimized implementations to run on-
board.

1) Dimensionality reduction: Dimensionality reduction
methods extract the main spectral patterns and remove re-
dundancies from the high-dimensional hyperspectral data.
Applying dimensionality reduction as a pre-processing step
before any succeeding algorithms increases overall computa-
tional efficiency [75], and the practical spatial-spectral features
of interest can be used for e.g. studying the water-leaving
radiance and atmospheric effects in an observed heterogeneous
scene. Shown in Table V, with 20 components chosen, a
size reduction rate is estimated to be 92.4% when combined
with CCSDS123v1. An optional step before dimensionality
reduction can be to apply smile and keystone corrections to
prevent intertwining systematic artifacts irrevocably in the data
by adjusting the images to account for systematic optical and
measurement noise inherent to the hyperspectral imager [76].

A common dimensionality reduction technique is Principal
Component Analysis (PCA) which obtains a reduced and
de-noised subspace representation of the raw hyperspectral
data, assuming a linear model with Gaussian noise [77]. The
extracted spatial-spectral information in a scene are contained
in only a few principal components instead of several dozens
of spectral bands. An FPGA implementation of PCA in
Xilinx Virtex-7 XC7VX690T proposed in [78] is reported to
obtain computational speed of 4.17 s when used to extract
24 principal components from an Airborne visible/infrared
imaging spectrometer (AVIRIS) image of Jasper Ridge Bio-
logical Preserve, California, with 614× 512 spatial pixels and
224 spectral channels, and is fast enough to process a stream
of hyperspectral images in real-time. According to [79], an
adaptive bilinear PCA-based On-the-Fly Processing (OTFP)
algorithm may sequentially process streaming blocks of data
instead of analyzing the whole dataset at the end of image
acquisition. Although in Matlab, its reported computational
speed is 300.2 s for obtaining 3 principal components from a
16-bit hyperspectral image of 1000 × 245 spatial pixels and
450 spectral channels, however higher speed is expected for
an FPGA implementation. An alternative method to PCA, the
Extended Multiplicative Signal Correction (EMSC) estimates
a de-noised subset of relevant spectra using a linear statistical
model of observations with approximated light absorbance and
scattering [80]. A software/hardware co-design of EMSC on
a Zedboard development platform with ARM Cortex-A9 pro-
cessor measures a computational time of 3.81 seconds when
applied on a 16-bit hyperspectral datacube with 500 × 500
spatial pixels and 50 spectral channels.

2) Target detection: Hyperspectral images of heteroge-
neous scenes are amenable to spectral-based target detection
because of their numerous spectral bands [81], [82]. An effec-
tive use of target detection in hyperspectral imagery requires a
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Fig. 15. Block diagram of the proposed imaging processing pipelines. In order, the hyperspectral images are captured, binned, processed at chosen level,
stored on SD-card and downlinked together with collected telemetry and metadata. Depending on the downlinked data product, additional ground-based
processing and fine-tuning can be applied before distribution to end user. In-situ validation and data fusion with other remote sensing data are critical aspects
the HYPSO-1 data validation. Black arrows indicate the minimal onboard processing pipeline while gray arrows are the alternative routes for tailored data
products.

TABLE V
HYPERSPECTRAL DATA PRODUCTS FOR Nx ×Ny = 956× 684 SPATIAL PIXELS

Level Bands/Components Pixel size (bits) Total (MB) Reduction (%) Speed (Mbps)
Raw Binned (at Bλ = 9) 120 16 156.94 - -
CCSDS123 (MOBIP) 120 16 69.75 55.6 6260a

PCA (DROBIP) 20 16 11.89 92.4 268.6b
OTFP (DROBIP) 20 16 11.89 92.4 7c

EMSC (DROBIP) 20 16 11.89 92.4 54.5d

Target detection (TOBIP) 1 16 1.308 99.2 903.1d
Classification - 16 classes (COBIP) 1 4 0.331 99.8 53.2c
Classification - 256 classes (COBIP) 1 8 0.711 99.6 53.2c

a : measured on Zynq-7030 Xilinx FPGA flight hardware on OPU.
b : estimated from Xilinx Virtex-7 XC7VX690T FPGA-based software/hardware co-design tests on similar hyperspectral data size.
c : estimated from software implementation test on similar hyperspectral data size.
d : estimated from Zynq-7000 FPGA-based software/hardware co-design tests on similar hyperspectral data size.

set of a-priori known target spectra and high spatial resolution
is desired to reduce the effects of spectral mixing in the spatial
pixels. Target detection generates a probability map of target
spectral signatures across the image in the spatial domain,
resulting in a two-dimensional data product per chosen number
of signatures as indicated in Table V. As an example, only
one target signature is chosen such that the size of the two-
dimensional map is 1× 956× 684× 16 bits = 1.308 MB, i.e.
a size reduction of approximately 99.2% of the original data.
Due to the small data size, the reduction for target detection in
Table V is assumed to not include lossless compression with
CCSDS123v1.

Proposed in [83], the target detection module supports
Constrained Energy Minimization (CEM), Adjusted Spec-
tral Matched Filter (ASMF) and modified Adaptive Cosine
Estimator (ACE) detectors to determine the likelihood of
specific spectral signatures in a spatial pixel. For real-time
computation on a stream of hyperspectral images, dimension-
ality reduction should be applied as a pre-processing step.
For software/hardware co-design of modified ACE algorithm
on a Zedboard development platform with ARM Cortex-A9
processor, the computational time is reported to be 3.29 s for
an input of HyMap 16-bit hyperspectral datacube of 224000
spatial pixels and 16 principal components given PCA pre-

processing [84]. A computational time of 0.5 s is reported
for FPGA-implementation of modified ACE algorithm on a
Zynq-7035 SoC (Kintex-7) applied on the complete HyMap
datacube with 126 spectral bands without PCA pre-processing
[83], which is used as benchmark estimate in Table V.

3) Classification: Using a spatial-spectral classification
framework, the spatial pixels in a hyperspectral image can be
separated into different classes based on spectral signatures
[85]. One of many such classification techniques that are
suitable for FPGA-implementation is the Fast Spectral Clus-
tering (FSC), a graph-based unsupervised method that does
not require training data [86], [87]. Indicated in Table V, it is
possible to represent each pixel or layer with a 4 bit integer for
fewer than 16 classes, whereas 256 classes can be represented
with 8 bits. The size of 16 class signatures with 120 spectral
bands per signature is 16× 120× 16 bits = 0.0038 MB and
for 256 class signatures the size is 256 × 120 × 16 bits =
0.06144 MB. These auxiliary data products are added to the
classification map with size of 1 × 956 × 684 × 4 bits =
0.327 MB for 16 classes and 1 × 956 × 684 × 8 bits =
0.654 MB for 256 classes. The estimated data size reduction
is 99.8% and 99.6%, respectively. Due to the small data sizes,
the reductions for classification in Table V are assumed to not
include lossless compression with CCSDS123v1.
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The computational speed for a Nystrøm Extension Clus-
tering version of FSC, described in [86], is estimated to be
about 245.8 Mbps based on a Matlab implementation that
resulted in 1.62 s used for providing 16 classes from a 16-bit
AVIRIS image of Salinas Valley, California, with 512 × 217
pixels and 224 spectral bands. Even higher speed is expected
for a software/hardware co-design of FSC on FPGA. An
alternative to FSC is the potentially more accurate Clustering
using Binary Partition Trees (CLUS-BPT) framework which
integrates embedded hyperspectral data segmentation, region
modeling, feature extraction by PCA and clustering [88].
Its reported computation time in Matlab is 7.48 s for the
same AVIRIS image. However, FSC generally outperforms
the CLUS-BPT in terms of computational time for an input
image with large spatial dimensions. As a worst case in Table
V, the estimated processing speed is therefore assumed to be
53.2 Mbps based on CLUS-BPT. Naturally, as with any other
onboard processing algorithms, cropping the images in the
spatial domain to rather focus on specific regions will improve
the processing latency in classification.

D. Discussion on advanced algorithms

Given the FPGA reconfigurability, other relevant algorithms
beyond those discussed may be uploaded to the OPU in-orbit if
potential maturity is reached. Generally, the algorithms should
first be rigorously tested on ground with careful validation of
processing characteristics such as speed, reliability and accept-
able accuracy resulting in the data. Relevant algorithms include
image registration, geo-referencing, atmospheric correction
and super-resolution which may improve the accuracy in
target detection and classification. However, these algorithms
are generally too computationally intensive and complex for
onboard implementation and real-time use. Further studies,
development and testing are required.

1) Image registration: Image registration is the determi-
nation of relative separation between individual pixels, some-
times named orthorectification. Such algorithms are in general
too computationally expensive for on-board applications [89].
A simpler ray-tracing method can be adapted for on-board im-
plementation, which has been prototyped for joint registration
and geo-referencing, similar to the one described in [90].

2) Geo-referencing: The benefit in onboard geo-referencing
lies in directly downlinking the latitude and longitude coordi-
nates of pixels with results from target detection or classifi-
cation. This requires immediate inputs of time-synchronized
ADCS and navigation data. For ground use, instead of down-
linking the whole data product from e.g. target detection or
classification, it is possible to transfer only the relevant spatial
pixel indices to be geo-referenced. This results in much smaller
data size and latency, and in-situ agents nearby HYPSO-1’s
observed area can therefore quickly be commanded to travel
to these coordinates for closer inspection.

3) Super-resolution: Super-resolution algorithms can be
adapted to enhance the spatial resolution in images as de-
scribed in [91], and thereby improve the radiometric and ge-
ometric accuracy. Super-resolution prototypes require a mea-
surement process, e.g. determining the point-spread function,

to infer higher spatial resolution in the image [92], [93],
which are based on methods from multi-frame super-resolution
[94], [95]. Although these types of algorithms can improve
the image spatial resolution, they are susceptible to noise,
quantization, compression and inaccuracies in the estimate
of the point spread function [96], [97]. Prior-based super-
resolution techniques, such as sparse image representations
[98] and convolutional neural nets [99], [100], namely over-
come the limitations in measurement-based techniques by
supplementing input pixels with expectations of hyperspectral
image statistics. Other methods involve using multispectral-
hyperspectral image fusion [101], [102] and super-resolution
based on dimensionality reduction [103].

An FPGA-implementation of a Richardson-Lucy (RL) de-
convolution algorithm on Xilinx Zynq-7020 Zedboard with
two ARM Cortex-A9 cores proposed in [104], has been
successfully applied on a hyperspectral data, where a com-
putational time of 1.06 ms is reported per iteration when
processing a band with size of 150 × 640 pixels by using
kernel size of 9× 9 pixels. Corresponding software/hardware
co-design of the deconvolution algorithm is proposed in [105].

4) Atmospheric Correction: Removing atmospheric effects
before dimensionality reduction, target detection or classifica-
tion, can improve the accuracy and efficiency in extracting
or detecting relevant water-leaving signals. The purpose of
atmospheric correction is to identify the terms in (6) that
contribute to the total ToA radiance, LToA

total, and predict the
actual water-leaving radiance component, Lwater, which may
further contain the optical properties of water constituents, e.g.
chlorophyll.

Many ground-based atmospheric correction schemes work
well for open ocean waters for multispectral data [56], [106],
[107], [108], and good performance has also been shown
for hyperspectral images of coastal waters [109]. Traditional
atmospheric correction methods are generally built on the
radiative transfer model [48], but they are not designed for
onboard real-time applications due to complexity and compu-
tational expense. Without contemporary empirical or ground
truth data, they can also be prone to over- or undercorrection
of the radiance terms in (6), resulting in significant radio-
metric inaccuracies for highly variable coastal waters and an
unpredictable atmosphere. On the other hand, effective non-
deterministic atmospheric correction methods using machine
learning, e.g. neural networks, have regularly been employed
and are considered to be robust given a proper set of training
data [108]. If trained hyperspectral images or ground truth data
are unavailable, simulation tools such as Accurate Radiative
Transfer (AccuRT) [110], based on a coupled atmosphere-
ocean radiative transfer model, could simulate heterogeneous
scenes of complex water and atmosphere to be used for
training [111]. A suitable on-board FPGA implementation of
atmospheric correction methods needs further investigation.

E. Dynamic Reconconfiguration

Using FPGAs can overcome the limited hardware resources
onboard a small-satellite and the increasing performance re-
quirements for onboard processing in terms of processing
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TABLE VI
PERFORMANCE FOR SELECTED HYPERSPECTRAL IMAGER MODES

Type Mode A Mode B Mode C Mode D Mode E
ADCS Mode Slew Slew Slew Nadir Nadir
AoI (pixels) 1080× 684 1080× 684 1080× 1194 1080× 1194 1936× 1216
Binning, Bλ (pixels) 9 18 9 9 1
Spectral range (nm) 387− 801 387− 801 387− 801 387− 801 220− 967
Spectral bands 120 60 120 120 215
Bandpass ∆λ (nm) 3.33 6.67 3.33 3.33 3.33
Frame rate FPS 18 12 12 12 10
Exposure time, τ (ms) 51 79 79 79 96
Scan duration (s) 53.08 53.08 57.00 9.19 1.00
Number of frames 956 637 685 111 10
Scan distance, along-track (km) 40.08 40.08 69.97 69.97 7.60
Swath width (km)a 40.08 40.08 69.97 69.97 69.97
Spatial resolution, along-track (m)a,b 553 582 618 1101 1231
Spatial resolution, cross-track (m)a,b 58.60 58.60 58.60 58.60 58.60
SGSD, along-track (m) 57.6 86.3 124.1 634.4 761.3
SNRwater,[Bλ,1] @470 nma 158.1 196.3 197.4 197.4 217.9
Data size, raw (MB) 156.94 52.28 196.29 31.81 4.71
Data size, MOBIP (MB) 69.75 23.24 87.24 14.14 2.09
Onboard processing time (s)c 5.8 1.9 7.2 1.2 0.2
OPU-PC transfer time (s)c 1924.1 641 390 2406.7 57.7
Downlink time (s)d 558.0 185.9 697.9 113.1 16.7
Data size, DROBIP (MB)e 11.62 7.75 14.54 2.36 0.22
Onboard processing time (s)e 5.6 2.2 7.0 1.1 0.2
OPU-PC transfer time (s)c 320.7 213.7 401.1 65.0 6.0
Downlink time (s)d 93.0 62.0 116.3 18.8 1.7
Data size, TOBIP (MB)e 1.31 0.87 1.64 0.27 0.02
Onboard processing time (s)e 8.9 3.0 11.1 1.8 0.29
OPU-PC transfer time (s)c 36.1 24.0 45.1 7.3 0.7
Downlink time (s)d 10.5 7.0 13.1 2.1 0.2
Data size, COBIP (MB)e 0.33 0.22 0.41 0.07 0.01
Onboard processing time (s)e 23.6 7.9 29.6 4.8 0.8
OPU-PC transfer time (s)c 9.1 6.1 11.4 1.9 0.4
Downlink time (s)d 2.6 1.8 3.3 0.6 0.1
a: viewing at nadir.
b: the spatial resolution in one frame, not the final image resolution using e.g. image registration and super-resolution.
c: includes time used for running on memory in the OS and writing data to SD-card at 100 Mbps.
d: total time required for 1 Mbps downlink data rate with S-band radio.
e: estimated based on Table V.

TABLE VII
MODE A DATA LATENCY FOR HYPSO-1 ON EXAMPLE DATE 28 MAY 2022

MOBIP (69.75 MB) DROBIP (11.62 MB) TOBIP (1.31 MB) COBIP (0.33 MB)
Sequence Start time Duration (s) Start time Duration (s) Start time Duration (s) Start time Duration (s)
Orbit 1
Image acquisition 10:29:40.0 53.1 10:29:40.0 53.1 10:29:40.0 53.1 10:29:40.0 53.1
Onboard processing 10:30:33.1 5.8 10:30:33.1 5.6 10:30:33.1 1.5 10:30:33.1 23.6
OPU to PC transfer 10:30:38.9 1924.1 10:30:38.7 320.7 10:30:34.6 36.1 10:30:56.7 9.1
Downlink NTNU - - - - 10:31:10.7 10.5 10:31:05.8 2.6
Downlink KSAT Spain - - 10:35:59.4 93.0 - - - -
Cruise 11:02:43.0 434.7 - - - - - -
Eclipse 11:09:56.7 2145.0 - - - - - -
Orbit 2
Cruise 11:45:42.0 630.0 - - - - - -
Downlink KSAT Svalbard 11:56:12.0 276.0 - - - - - -
Downlink NTNU 12:00:48.0 282.0 - - - - - -
Total latency (min) 95.85 7.87 1.69 1.47

TABLE VIII
MODE A DATA LATENCY FOR HYPSO-1 WITHOUT CAN OVERHEAD ON EXAMPLE DATE 28 MAY 2022

MOBIP (69.75 MB) DROBIP (11.62 MB) TOBIP (1.31 MB) COBIP (0.33 MB)
Sequence Start time Duration (s) Start time Duration (s) Start time Duration (s) Start time Duration (s)
Image acquisition 10:29:40.0 53.1 10:29:40.0 53.1 10:29:40.0 53.1 10:29:40.0 53.1
Onboard processing 10:30:33.1 5.8 10:30:33.1 5.6 10:30:33.1 1.5 10:30:33.1 23.6
Downlink NTNU 10:30:38.9 316.0 10:30:38.7 93.0 10:30:34.6 10.5 10:30:56.7 2.6
Downlink KSAT Spain 10:35:54.9 242.0 - - - - - -
Total latency (min) 8.62 2.53 1.09 1.32
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complexity and spatial-spectral resolution in hyperspectral
data. Using Dynamic Reconfiguration (DR) on FPGAs, re-
configurable solutions obtain the needed flexibility and allow
changes and adaptation of the onboard processing In HYPSO-
1, the DR can be used to increase resource utilization by
switching between different processing pipelines and for func-
tional updates and upgrades in each pipeline that are uplinked
from the ground. An advanced ability of modern FPGAs
is Dynamic Partial Reconfiguration (DPR) that reprograms
portions of the FPGA, while the rest of the system continues to
operate. The DPR allows time-multiplexing of mutually time-
exclusive algorithms/steps on a finer scale of the available
resources and is characterized by shorter reconfiguration times
since FPGA configuration time is directly proportional to the
configuration bitstream size. The DPR can also be used for
applications such as mitigation and recovery from single-
event upsets (SEU) and for real-time dynamic scenario-based
adaptive image processing. Furthermore, the OPU also has
a “golden image” that enables booting a previous version
of a steady on-board processing configuration. The OPU
will automatically revert to the “golden image” in case of
corruption or unwanted updates or upgrades that have been
uploaded from ground.

F. Ground Support

Indicated at bottom right in Fig. 15, some of the algorithms
should operate on the ground at all times to (a) adjust, fine-
tune and prepare data for end users; (b) assist in in-orbit
calibration of the hyperspectral imager; and (c) rigorously test
accuracy and reliability in algorithm updates before uploading
them to the satellite for onboard image processing. Advanced
modules such as image registration, geo-referencing, atmo-
spheric correction and super-resolution are dedicated for use
on ground because they require access to prompt reference
libraries and are computationally expensive. In-orbit upgrades,
or at least future missions, may include versions of the
aforementioned algorithms only if maturity is demonstrated
on ground. Apart from suitable implementations before launch,
alternative prototype algorithms for dimensionality reduction,
target detection and classification are also tested on ground
first.

G. Data latency in typical HYPSO-1 operations

Table VI shows HYPSO’s remote sensing performance for
selected hyperspectral imager modes and corresponding size
and latency for data products obtained from MOBIP, PCA-
based DROBIP, TOBIP with one twodimensional map and
COBIP with 16 classes. For each pipeline, the assumptions
are based on the chosen spectral channels, pixel size in
bits, reduction factors and processing speeds stated in Table
V, but with extended results for other datacube sizes. The
ADCS modes with slew maneuvers are set with starting angle
θ0 = 20◦ and final angle θf = −20◦ at ωy = −0.754◦/s and
are assumed to have no attitude control and knowledge errors.
The SNR is calculated using the ToA water-leaving radiance
based on data from MOBY as described in Section III-C.

Modes A and B provide higher spatial resolution but nar-
rower FoV for a chosen observed area size of approximately
40 km by 40 km, while Modes C and D provide coarser
spatial resolution and wider FoV for a chosen target area
size of approximately 70 km by 70 km. Modes A, B, C
and D use 1080 out of 1936 spectral pixels to cover the
relevant spectral range of 400−800 nm. Mode E is dedicated
for diagnostics and in-orbit calibration during commissioning
phase. “Onboard processing time”, “OPU-PC transfer time”
and “Downlink time” are the durations needed for image
processing for selected pipeline, completing the data transfer
between OPU to PC at speeds of up to 290 kbps and com-
pleting the data downlink to ground through S-band radio at a
bandwidth of 1 Mbps, respectively. It is also assumed that the
onboard data is written to the SD-card at 100 Mbps which is
included in the onboard processing time.

The results from Table VI are put into the context of
a typical mission scenario where HYPSO-1 uses Mode A
to observe a 40 km × 40 km near Lofoten, Norway, then
immediately aims to downlink a selected data product to
ground stations at NTNU, KSAT Svalbard and KSAT Spain
with respective elevation angles assumed to be 5◦, 2◦ and
8◦. Using simulated orbit propagator in Analytical Graphics,
Inc., (AGI) Systems Toolkit (STK) with epoch date set to
28 May 2022, results are shown in Tables VII with OPU-PC
overhead and VIII without the overhead. A dash indicates that
the operation is not available or necessary. “Cruise” means that
HYPSO-1 is only harvests solar energy and “Eclipse” means
that it is in the Earth’s shadow. With overhead in OPU-PC
transfer, all except for MOBIP data product can be downloaded
in less than one orbit, or specifically less than 10 min. All
data products are available in less than 10 min without the
overhead.

Regarding the OPU-PC transfer overhead, the current hard-
ware and software architecture in HYPSO-1 is limited by the
communication interface between the OPU and the PC due to
data transfer over a CAN network with a data rate of about
300 kbps, which negatively impacts the overall latency for
larger data sizes as indicated in Table VII. In future missions,
the physical interface could be replaced with a data bus
capable of higher data rates, for example Ethernet or RS-422,
which would involve spending much less time by downlinking
directly from the OPU, and better latency can be potentially
achieved as shown in Table VIII.

VII. CONCLUSIONS

Following the advancements in miniaturization, image pro-
cessing algorithms and sensor technology, the mission and
system design of HYPSO-1 shows that pushbroom hyper-
spectral imaging combined with FPGA-based on-board image
processing on a nano-satellite, can enable ocean color data
products with high spatial and spectral resolution and low data
latency to meet the user needs for operational coastal envi-
ronment monitoring. The imager design, HYPSO-1’s remote
sensing approach and on-board software grants flexible trade-
offs to be made between image spatial resolution, spectral
resolution and SNR. The chosen FPGA-based CCSDS123v1
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lossless compression, dimensionality reduction, target detec-
tion, and classification algorithms may reduce the data size
significantly without losing crucial information. In contrary to
using rigorous data processing and analysis on ground, the
smaller data products can be made available within minutes
after observation. This enables quick download of tailored data
products that may satisfy immediate needs of end users, as
such it could for example allow better mitigation for potential
damage from Harmful Algal Blooms when early detection
and warning are needed. Based on lessons learned from the
HYPSO-1 operations, the goal is to iterate and enhance the
design of the hyperspectral imager, attitude determination and
control system, satellite communications architecture, and the
on-board image processing algorithms for future missions.
After launch, the HYPSO-1 mission aims to determine the
efficacy in quickly providing high-resolution hyperspectral
data from small-satellites for ocean color applications.
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[30] F. Sigernes, M. Syrjäsuo, R. Storvold, J. Fortuna, M. E. Grøtte, and
T. A. Johansen, “Do it yourself hyperspectral imager for handheld to
airborne operations,” Opt. Express, vol. 26, no. 5, pp. 6021–6035, 2018.

[31] A. G. C. Guerra, F. Francisco, J. Villate, F. Agelet, O. Bertolami,
and K. Rajan, “On small satellites for oceanography: A survey,” Acta
Astronaut., vol. 127, pp. 404–423, 2016.
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[73] M. Orlandić, J. Fjeldtvedt, and T. A. Johansen, “A Parallel FPGA
Implementation of the CCSDS-123 Compression Algorithm,” Remote
Sens., vol. 11, no. 6, p. 673, 2019.
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