
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1

An Efficient Real-Time FPGA Implementation of
the CCSDS-123 Compression Standard for

Hyperspectral Images
Johan Fjeldtvedt, Student Member, IEEE, Milica Orlandić, Member, IEEE and Tor Arne Johansen, Senior

Member, IEEE

Abstract—Hyperspectral imaging (HSI) can extract informa-
tion from scenes on the Earth surface acquired by airborne
or spaceborne sensors. On-board processing of hyperspectral
imaging is characterized by large datasets on one side and limited
processing time and communication links on the other. The
CCSDS-123 algorithm is a compression standard assembled for
space-related application which allows compacted data transmis-
sion via a transmission link. In this paper, a low-complexity high-
throughput FPGA implementation of CCSDS-123 compression
algorithm with BIP ordering is presented. Hardware accelerators
implemented in Field-Programmable Gate Arrays (FPGAs) are
increasingly used for custom tasks due to their efficiency, low
power and reconfigurability. The proposed implementation of
CCSDS-123 compression standard has been tested on Zedboard
development board containing a Zynq-7020 FPGA. The results
are verified against an existing software implementation. The
synthesized design can perform on-the-fly processing of hyper-
spectral images with maximum operating frequency of 147 MHz.
The achieved throughput of 147 Msamples/s (2.35 Gb/s) is higher
when compared with the throughput reported in recent state of
the art FPGA implementations.

Index Terms—CCSDS-123 compression, Field programmable
gate arrays (FPGA), HSI, lossless compression, space-related
applications

I. INTRODUCTION

Due to the increasing demands of onboard autonomy,
onboard computing is one of the needs for future drones
and spacecraft. In the recent period, the space development
has moved towards small-satellite (SmallSat) missions, low-
cost platforms with introduced budget and schedule flexibil-
ity. SmallSat computing resides in the use of commercial
processors contrarily to expensive flagship satellite missions
which primarily rely upon rad-hard devices to safeguard
electronics from failing. In this sense, Small satellites are
often used as technology demonstrations to reduce time for
advancing the state of the art. Space-related applications such
as synthetic aperture radar (SAR), image processing and
hyperspectral imaging (HSI) require critical data processing
to be performed onboard in order to preserve transmission
bandwidth. Hyperspectral imaging applications, in particular,
are characterized by large amount of data in a 3D cube form.

J.Fjeldtvedt and M. Orlandić is with the Departmentof Electronic Systems,
Norwegian University of Science and Technology, Norway.

T. A. Johansen is with the Department of Engineering Cybernetics, Nor-
wegian University of Science and Technology, Norway.

Corresponding author: Milica Orlandić, e-mail: milica.orlandic@ntnu.no.
Manuscript received May 8th, 2018; revised January –, —-.

A HSI pixel consists typically of hundreds of components in
the spectral domain. The widely used push-broom imagers,
such as a lightweight imager of high precision for drone
and airborne applications in [1], record spatial dimensions
as a perpendicular cross-section of any target along the track
direction.

The data compression in onboard HSI processing is per-
formed to lower the amount of data for transmission back to
Earth. The challenge is to perform extensive data reduction
with minimum requirements of limited onboard resources. In
addition, researchers in HSI remote sensing urge for no loss
of information in the experiments, making lossless compres-
sion the preferable compression mode. Even though lossless
compression reduces data volume, it does not compromise
data integrity and the image can be fully recovered after
decompression. Real-time data processing and reconfigurable
hardware solutions have become the standard choice for on-
board remote sensing application and compression due to their
small size, weight, power consumption and their resistance to
damages and malfunctions caused by ionizing radiation [2].
Hybrid processing systems, system-on-a-chip (SoC) platforms,
combining different technological solutions such as CPU,
GPU, DSPs and FPGAs are attractive for onboard processing.
The sequential portion of algorithms run on the processors
whereas intensive computational operations suitable for par-
allel implementation are placed in hardware accelerators (in
FPGAs on the programmable logic). FPGAs are desirable
for space-directed applications because of high performance
achieved by creating custom application-specific architectures.
Massive computational speedup and low energy consumption
are often achieved by implementing highly optimized data
paths. By expanding logic resources in current FPGAs, it is
also possible to execute several complex algorithmic task in
parallel achieving the throughput required for real-time pro-
cessing. Common SoC devices for space-related applications
(CubeSat and other SmallSat single-board computers) used in
ongoing Low Earth Orbit (LEO) missions include the Xilinx
Zynq 7000 series, Microsemi Smart Fusion or Xilinx Virtex-5
as stated in [3]. The survey also reports the poor performance
of rad-hard FPGAs compared to commercial ones (Xilinx
Virtex 5QV FX150 versus Zynq-7020).

A typical compression system in image/video processing
consists of decorrelation, quantization and entropy encoding
stages. The decorrelation stage contains a prediction pro-
cess and/or transform process. Most common transforms are

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2

Karhunen–Loeve Transform (KLT), Discrete Wavelet Trans-
form (DWT) and Discrete Cosine Transform (DCT). Among
algorithms for compressing HSI images, JPEG2000 standard
uses DWT for spatial decorrelation, whereas KLT is part of
Principle Component Analysis (PCA) widely used for spectral
dimensionality reduction [4]. The low complexity JPEG-LS
uses a simple non-linear predictor and a context-based entropy
coder, whereas a differential version of JPEG-LS algorithm
encodes differences of adjacent bands. The LCE algorithm
[5], characterized by high tolerance to bit-flips in the encoded
stream, is considered as a good candidate for parallel imple-
mentation. Recent FPGA implementations of LCE algorithm
are presented in [6], [7].

The Consultative Committee for Space Data Systems
(CCSDS) defines standards for lossless data compressors
applicable to 3D images produced by multispectral and hy-
perspectral imagers. The CCSDS-121 standard [8] consists of
pre-processing unit with prediction and mapping operations
and adaptive entropy coder based on Rice coding. A recent
FPGA implementation of CCSDS-121 algorithm is presented
in [9]. The successor CCSDS-122 [10] shares features with
JPEG2000 such as a three-level 2D discrete wavelet transform
(DWT), successive quality refinement of an images and a Bit
Plane Encoder (BPE). An FPGA implementation of CCSDS-
122 standard in [11] is tested in EnMap mission satellite. The
latest CCSDS-123 standard [12] is characterized by low com-
plexity suitable for fast real-time hardware implementation.
Recent FPGA implementations of the CCSDS-123 standard
[13] presented in [14]–[18] target high throughput and take
into account limitations in terms of storage utilization.

In this paper, an efficient high-throughput FPGA implemen-
tation of the CCSDS-123 compression standard is proposed.
The proposed compression core is capable of processing
HSI cube sizes of various imagers. The core supports the
majority of user-defined compression parameters proposed by
the standard. The achieved throughput is higher in comparison
with the state of the art implementations [14]–[18].

The paper is structured as follows: Section II presents a
overview of the CCSDS-123 standard. The proposed hardware
implementation is described in Section III. Results in terms
of logic utilization are presented for a variety of compression
parameters in Section IV. In addition, performance comparison
with the state of the art is described. Finally, the conclusions
are given in Section V.

II. BACKGROUND

The CCSDS-123 standard [13] is a data compression al-
gorithm for multispectral and hyperspectral images. In this
section, detailed algorithm description is given for identifying
data dependencies affecting the performance.

A HSI cube is a three-dimensional array of size (Nx, Ny ,
Nz) with sample sz,y,x where z indicates the spectral band
and (x, y) are spatial coordinates. The data samples may be
also described by the pair of indices (z, t) where t = y·Nx+x.
In a push-broom imager, the dimensions x and y correspond
to scanned line (cross-track) direction and flight (along-track)
direction, respectively. A frame Fy is the set of sample values

for one y coordinate. The prediction stage computes estimates
of each component based on samples in 3D space around the
processed sample. The difference between the estimate and the
actual component value, prediction residual, is then encoded
by the entropy encoder. Cube size, dynamic range, output word
size, sub-frame interleaving depth, sample type, scanning order
and entropy encoder type are first encoded in the bitstream.
The dynamic range D defines bit resolution of a sample within
the range [2, 16], whereas the output word size B is within the
range 1 ≤ B ≤ 8 bytes. The CCSDS-123 standard supports
Band Interleaved (BI) and Band Sequential (BSQ) encoding
orders for defining the arrangement of encoded samples in the
input bitstream. The BI ordering reads the image in (y, x, z)
order, whereas BSQ ordering reads the image band by band
- (z, y, x). In BI mode, the parameter sub-frame interleaving
depth M , defined in the range (1, Nz), partitions frame Fy into
sub-frames. Each sub-frame contains M consecutive spectral
bands. Special cases of BI ordering are Band Interleaved by
Pixel (BIP) for M = 1 and Band Interleaved by Line (BIL)
for M = Nz .

A. Prediction stage

Prediction of the image sample sz,y,x is computed based
on values of nearby predicted samples in the current spectral
band and in P preceding bands.

1) Local sum and differences: The local sum σz,y,x is a
weighted sum of adjacent samples to sample sz,y,x within the
spectral band z. The neighbor-oriented local sum is computed
as follows:

σz,y,x = sz,y,x−1 + sz,y−1,x−1 + sz,y−1,x + sz,y−1,x+1, (1)

for y > 0 and 0 < x < NX − 1, whereas sample predictions
at the edges are given as:

σz,y,x =


4sz,y,x−1, y = 0, x > 0

2(sz,y−1,x + sz,y−1,x+1), y > 0, x = 0

sz,y,x−1 + sz,y−1,x−1 + 2sz,y−1,x, x = Nx − 1.
(2)

The central local differences for P +1 spectral bands are then
defined as:

dkz,y,x = 4 · (sz−k,y,x)− σz−k,y,x (3)

where k = 0, . . . , P is the distance of the previously processed
spectral band from the currently processed band z. Reduced
prediction mode contains only central local differences dkz,y,x,
whereas full mode includes in addition the directional differ-
ences:

dNz,y,x =

{
4 · sz,y−1,x − σz,y,x, y > 0

0, y = 0
(4)

dNWz,y,x =


4 · sz,y−1,x−1 − σz,y,x, x > 0, y > 0

4 · sz,y−1,x − σz,y,x, x = 0, y > 0

0, y = 0

(5)

dWz,y,x =


4 · sz,y,x−1 − σz,y,x, x > 0, y > 0

4 · sz,y−1,x − σz,y,x, x = 0, y > 0

0, y = 0.

(6)

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 3

where labels ’N’, ’W’ and ’NW’ define position of neighbor-
ing samples with respect to the currently processed sample
within the band z. The computed differences are stored in
local difference vector Uz(t) with size Cz = P + 3 for full
mode and Cz = P for reduced prediction mode.

2) Prediction: An adaptive linear prediction computes the
integer scaled predicted sample value ŝ∗z(t) as follows:

ŝ∗z(t) =
2Ω · σz(t) +WT

z (t) · Uz(t)
2Ω+1

(7)

where Wz(t) is a weight vector with (Ω+3)-bit signed integer
coefficients, and resolution Ω is within range [4, 19]. The
rounded s̃round version of scaled predicted sample value is
given as:

s̃round(t) =

mod∗R
[
d̂z(t) + 2Ω(σz(t)− 4smid)

]
2Ω+1

 , (8)

where mod ∗
R[x] = ((x + 2R−1) mod 2R) − 2R−1 and

the range of register size R is [max(32, D + Ω + 2), 64]. A
weighted average of differences d̂z(t) is defined as d̂z(t) =
Wz(t)

TUz(t). The final scaled predicted sample value s̃z , for
t > 0 is clipped version of s̃round:

s̃z(t) = clip (s̃round(t) + 2smid + 1, (2smin, 2smax + 1)) ,
(9)

whereas for t = 0, it is given by:

s̃z(t) =

{
2sz−1(t), t = 0, P > 0, z > 0

2smid, t = 0 and (P = 0 or z = 0).
(10)

The lower and the upper sample value limit and the mid-range
sample value [smin, smax, smid] are defined as [0, 2D−1, 2D−1]
and [−2D−1, 2D−1 − 1, 0] for unsigned and signed samples,
respectively. The parameter s̃z is then re-normalized to the
range of the input sample (D-bit quantity):

ŝz(t) =

⌊
s̃z(t)

2

⌋
. (11)

3) Weight update: The standard defines default and custom
weight initialization for selecting the initial weight vector Wz .
Default values of vector coefficients ωkz are defined as:

ωkz =

{
7
82Ω, k = 1

b 1
8ω

k−1
z c, k = 2, . . . , P.

(12)

Initial directional weight coefficients are set to zero. The
weights are dynamically updated based on prediction error
ez(t) = 2sz(t)− s̃z(t) as follows:

∆Wz(t) =

⌊
1

2

(
sgn+[ez(t)] · 2−ρ(t) · Uz(t) + 1

)⌋
. (13)

Weight update scaling exponent ρ, controlling convergence
speed, is given as:

ρ(t) = clip
(
νmin +

⌊
t−Nx
tinc

⌋
, {νmin, νmax}

)
+D + Ω.

(14)
Computation of ρ includes parameters νmin, νmax and weight
update change interval tinc which determine the rate at which
the predictor adapts to the image content statistics. The ranges

of νmin and νmax are −6 ≤ νmin ≤ νmax ≤ 9, whereas the
range of tinc is (24, 211). The exponent ρ is incremented at
regular intervals determined by the value tinc and its initial and
final value are defined as νmin +D −Ω and νmax +D −Ω,
respectively. The final update step for pixel at position t + 1
is given by:

Wz(t+ 1) = clip (Wz(t) + ∆Wz(t), {ωmin, ωmax}) (15)

where ωmin = −2Ω+2 and ωmax = 2Ω+2 − 1.
4) Residual mapping: The prediction residual ∆z(t) is the

difference between the actual sample value sz(t) and the
predicted sample ŝz(t), ∆z(t) = sz(t) − ŝz(t). The residual
mapping converts the signed predicted residuals to a D-bit
unsigned integer, producting the mapped prediction residual
δz(t):

δz(t) =


|∆z(t)|+ θz(t), |∆z(t)| > θz(t),

2|∆z(t)|, 0 ≤ (−1)s̃z(t)∆z(t) ≤ θz(t),
2|∆z(t)| − 1, otherwise,

(16)
where

θz(t) = min{ŝz(t)− smin, smax − ŝz(t)}. (17)

B. Entropy Encoding

The CCSDS-123 standard defines a sample-adaptive en-
coder and a block-adaptive entropy encoder. The focus of the
paper is on sample-adaptive encoder which uses a Golomb 2n

variable-length binary coding technique (GPO2). The max-
imum produced code word length is Umax + D for each
incoming mapped residual δz(t), where the unary length limit
Umax is defined in the range [8, 32].

The generation of code words relies on tracking of the
average values of the residuals in each band. The average
value computation is performed by accumulating the sample
values in an accumulator Σz(t) and dividing the result by the
number of processed samples, Γ(t). The ratio Σz(t)/Γ(t) is
an estimate of the mean mapped prediction residual within a
spectral band. The accumulator Σz(t) is defined as:

Σz(t) = Σz(t−1)+ δz(t−1), for Γ(t−1) < 2γ
∗
−1, (18)

and counter Γ(t) is incremented for each sample:

Γ(t) = Γ(t− 1) + 1, Γ(t− 1) < 2γ
∗
− 1. (19)

The re-scaling counter size γ∗ determines the maximum value
of counter Γz(t). The initial value of the counter and the
accumulator are given as:

Γ(1) = 2γ0 , (20)

Σz(1) =

⌊
1

27

(
3 · 2K+6 − 49

)
Γ(1)

⌋
. (21)

The initial count exponent γ0 is defined in the range [1, 8],
whereas the range of accumulator initialization constant K is
in the range [0, D−2]. After reaching Γ(t−1) = 2γ

∗ −1, the

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 4

accumulator and the counter are re-scaled in order to increase
impact of more recent sample values as follows:

Γ(t) =

⌊
Γ(t− 1) + 1

2

⌋
, (22)

Σz(t) =

⌊
Σz(t− 1) + δz(t− 1) + 1

2

⌋
. (23)

The parameter kz(t) is defined as the largest non-negative
integer kz(t) = max{1 ≤ i ≤ D−2} satisfying the following
inequality:

Γ(t)2i ≤ Σz(t) +

⌊
49

27
Γ(t)

⌋
, (24)

otherwise kz(t) = 0, for 2Γ(t) > Σz(t) +

⌊
49

27
Γ(t)

⌋
.

For an input residual δz(t) and a given Umax, code word
generation involves computation of the quotient and residual
pair (uz, rz) as follows:

uz(t) =

⌊
δz(t)

2kz(t)

⌋
, rz = δz(t) mod 2kz(t). (25)

The parameters kz(t), rz(t) and uz(t) are finally used in code
word generation as follows:

• If t = 0, the code word is the D-bit unsigned integer
binary representation of δz(t).

• If t > 0 and uz(t) < Umax, the code word consists of
uz(t) ’0’s followed by ’1’ and the kz(t) least significant
bits of δz(t) corresponding to the remainder rz(t).

• If t > 0 and uz(t) ≥ Umax, the code word consists of
Umax ’0’s, followed by the D-bit unsigned integer binary
representation of δz(t).

III. PROPOSED CCSDS-123 ENCODER IMPLEMENTATION

The important aspects of the hardware implementation
performance are throughput, algorithmic complexity and mem-
ory/buffering requirements. The computational complexity of
the CCSDS-123 algorithm is considered low, so focus is on
data dependency identification affecting storage requirements
and throughput. Due to the causal nature of the prediction
stage, the amount of data to be stored varies with parameter
P and with the processing order. In particular, the sample
ordering affects storage requirements for local differences and
weight vectors, data dependencies between various stages,
throughput and susceptibility to parallel implementation.

A. Memory Requirements

1) Neighboring samples: When encoding a sample sz(t),
it is required to store locally the neighboring samples used to
compute the local sums and differences. Sample distance is
defined as the number of clock cycles from the cycle samples
are first streamed in until the cycle when these samples are
used as neighbors. Table I shows sample distances required
for storing neighbors (W , NW , N , NW) for different sample
orderings.

TABLE I: Sample distance between current sample and neigh-
boring samples [18]

Order W NE N NW

BIP Nz (Nx − 1)Nz NxNz (Nx + 1)Nz

BIL 1 NxNz − 1 NxNz NxNz + 1
BSQ 1 Nx − 1 Nx Nx + 1

2) Weight vectors and accumulators: Each band uses its
own weight vector in the prediction stage and accumulator
in the encoding stage. In BIP ordering, sample sz(t + 1)
is processed Nz samples after sz(t) implying the need for
storing the weight vector and accumulator for each band. In
BIL ordering, sample sz(t + 1) is processed after sample
sz(t) within the same line of the image. When the end of the
line is reached, it is required to store the weight vector and
accumulator until processing for the same band starts in the
next line. This implies the need for storing the weight vector
and the accumulator for each band also in BIL ordering. In
BSQ ordering, only one weight vector and accumulator are
stored since sz(t+ 1) is processed after sz(t).

3) Previous local differences: For each sample there is
a need to store the central local differences computed in
P previous bands of the same pixel. The requirements for
storing the local differences are summarized in Table II. In
BIP ordering, differences are computed during the P previous
cycles. In BIL ordering, the local differences are computed
for the whole line of width Nx in the P previous bands.
The sample distance between the least recent local difference
required to be stored and current sample is P ×Nx cycles. In
BSQ ordering, the frames are processed sequentially, implying
that the largest sampling distance is P ×Nx ×Ny cycles.

TABLE II: Sample distance between the current sample and
the sample in the same position in the previous bands [18]

Order z − 1 z − 2 ... z − P

BIP 1 2 P
BIL Nx 2Nx PNx

BSQ NxNy 2NxNy PNxNy

A summary of required memory resources in different stages
of the compression algorithm for various sample orderings is
given in Table III. The BSQ ordering requires large amounts of
memory, even for small values of P , for storing the set of Ny×
Nx local difference vectors. Thus, storing local differences in
BSQ ordering for a cube of size 512×2000×128 with 16-bit
samples and with a default value of P = 3, requires 6.95 MB
exceeding available block RAM capacity in a mid-range Zynq-
7020 FPGA. For larger P , available block RAM capacity is
quickly exceeded even in high-end devices.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 5

Dot product
Sample
delay

Central difference store

Weight store

Predictor

Residual
mapping

Encoding

Packing

Weight
updateControl signal

generation

Incoming
sample

Compressed
bitstream

Local difference

Directional
difference

Local sum

Fig. 1: Overview of the CCSDS-123 implementation with BIP scanning order.

TABLE III: Memory resource requirements for sample order-
ings

Order BIP BIL BSQ

Samples (Nx + 1)NzD (NxNz + 1)D (Nx + 1)D
Local diff. P (D + 3) PNx(D + 3) PNxNy(D + 3)

Weights NzCz(Ω + 3) NzCz(Ω + 3) Cz(Ω + 3)
Accum. Nz(D + γ∗) Nz(D + γ∗) D + γ∗

B. Data Dependencies
In BIP ordering, the updated weight vectors for all the

bands need to be stored. On the other side, the BIP ordering
is a good candidate for parallel processing since it is not
required to complete prediction of a sample sz(t) before
starting prediction of the next sample sz+1(t). In BIL and
BSQ ordering, the prediction and weight update operations
have to be completed before starting the prediction of the
sample since updated weight vector Wz(t + 1) is used for
computing d̃z(t+ 1).

C. Architecture overview
In a typical HSI system, samples are either streamed di-

rectly from camera sensor of an imager or from the external
memory to the accelerator. Based on the previous analysis
in terms of memory requirements, possibilities for parallel
implementation, and taking into consideration native layout
of the HSI image in memory, the BIP ordering is chosen as
sample ordering. An overview of the proposed CCSDS-123
implementation is shown in Figure 1.

1) Sample delay: This module delays incoming samples
so that the current and the neighboring samples in positions
(W,NW,N,NE) are available. This is achieved by chaining
FIFO instances of particular lengths, Nz and Nz×(Nx−2) as
shown in Figure 2. Given the sample distance of Nz between
sample sz,y,x and its neighbor sWz,y,x−1, sample sz,y,x−1 is
pushed into a FIFO of length Nz in order to be present at
the FIFO’s output in the same cycle sz,y,x is streamed in.
Sample sz,y−1,x−1 is present at the output of the last FIFO
(Nx+1)·Nz cycles after its arrival to the sample delay module.

NZ

NZ

NZ

NZ(NX-2)

sz,y,x sz,y,x-1

sz,y-1,x+1

sz,y-1,x

sz,y-1,x-1

sz,y,x

sz,y-1,x+1sz,y-1,xsz,y-1,x-1

sz,y,x-1 sz,y,x

Fig. 2: Sample delay module with chain of FIFOs

2) Control signal generation: In addition to the sample
streaming between the modules in the pipeline, control signals
such as x, y and z coordinates of the current sample are also
produced by using a set of counters. The additional signals
based on the position of the sample are generated as follows:

• flags indicating if the sample is in the first line, in the
first pixel of a line, the last pixel of a line, or the last
sample in the last pixel,

• weight update scaling exponent ρ(t), used in the weight
update in Eq. (14).

3) Local sum and difference computation: These operations
are performed in a three-stage pipeline as presented in Fig. 3.
The first two stages compute the local sum, whereas the last
stage computes the local central difference and the directional
differences. The local sum defined by Eq. (2) is split across
two pipeline stages in order to reduce delay. In the first stage,
expressions term1 and term2 are computed as follows:

term1 =


sz,y,x−1 + sz,y−1,x−1, y > 0, 0 < x < NX − 1

4sz,y,x−1, y = 0, 0 < x < NX − 1

2sz,y−1,x, y > 0, x = 0

sz,y,x−1 + sz,y−1,x−1, y > 0, x = NX − 1
(26)

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 6

term2 =


sz,y−1,x + sz,y−1,x+1, y > 0, 0 < x < NX − 1

0, y = 0, 0 < x < NX − 1

2sz,y−1,x+1, y > 0, x = 0

2sz,y−1,x, y > 0, x = NX − 1,
(27)

whereas the local sum is then produced by summation of
term1 and term2.

Compute
term1

Compute
term2

sz,y,x

sz,y,x-1

sz,y-1,x+1

sz,y-1,x

+

sz,y-1,x-1

σz(t)

Compute
central

difference

Compute
directional
differences

dW
z(t)

dN
z(t)

dNW
z(t)

dz(t)

Fig. 3: Local sum, local difference and central difference
calculations

4) Central difference store: The central difference store
keeps the local central differences dz−k,y,x computed in the
previous k = 1, . . . , P bands in a shift register shown in Fig. 4.
The computed local central difference dz,y,x is stored in the
first register, while the previous contents is shifted by one
position. When z = Nz − 1, the contents of the shift register
is set to zero so that local differences from the previous pixel
are not used for the prediction of a new pixel.

dz-1(t) dz-2(t) dz-3(t) dz-P(t)

 … dz(t)

Fig. 4: Central difference store

5) Dot product: The dot product is performed in a pipeline
with variable depth depending on Cz . In the first stage, each
element in Uz(t) is multiplied with the corresponding element
in Wz(t) followed by a tree of adders as presented in Fig. 5.
The number of stages in the adder tree is S = dlog2(Cz)e.
The adder tree is implemented as follows: s(2S+i) = s(2i)+
s(2i + 1) for 0 ≤ i ≤ 2S − 2, whereas the initial 2S − 1
indices are reserved for the multiplication operations s(i) =
ui · ωi for 0 ≤ i ≤ 2S − 1. The result of the dot product
operation is d̂z = s(2S+1 − 2).

6) Predictor: The predictor computes the scaled predicted
sample s̃z(t) defined in Eq. (9) by splitting the operation
across two-pipeline stages as presented in Fig. 6. In the first
stage, fraction temp1 in the numerator is computed:

temp1 = mod∗R
[
d̂z(t) + 2Ω(σz(t))

]
, (28)

+

x x

s(0) s(1)

s(4) s(5)

+

s(6)

+

x x

s(2) s(3)

u0 w0 u1 w1 u2 w2 u3 w3

dz dz
^

Fig. 5: Dot product for Cz = 4

Select
value for
predicted
sample

+dz(t)

^

<< Ωσz(t)

Truncate
or extend
to R bits

<< 1sz(t)
Store

previous
sample

>> Ω+1 clip

0

sz(t)
~

Fig. 6: Implementation of prediction stage

where multiplication by a power of 2 is implemented by
shifting. The term 4smid is set to zero since implementation
uses signed numbers. The scaled predicted sample s̃z(t) is
then computed as follows:

s̃z(t) = clip
(⌊

temp1

2Ω+1

⌋
+ 1, {2smin, 2smax + 1}

)
, for t > 0.

(29)
For t = 0, P > 0 and z > 0, the sample sz−1(t) is used in
the computation of s̃z(t), otherwise s̃z(t) = 0. A multiplexer
finally chooses the result between three defined cases based
on status of the flags, parameter P and band z.

7) Weight update: The weight update from Eq. (15) is
performed in three-pipeline stages as presented in Fig. 7. The
parameter ρ(t) computed in the control unit is sent along with
the input sample. The first stage computes the component-wise
product temp1 = sgn+[ez(t)] ·Uz(t), equivalent to the change
of the sign of the component depending on whether ez(t) is
positive or negative. Since ez(t) = 2sz(t)− ŝz(t), the condi-
tion ez(t) < 0 is equivalent to the inequality 2sz(t) < ŝz(t).
This is implemented by choosing between vectors Uz(t) and
−Uz(t) based on the result of the comparison. The second
stage computes weight update factor ∆Wz(t) from Eq. (13).
The parameter ρ(t) has a small range of possible values (at
most -6 to 9), so the expression 2−ρ(t)temp1 for each value of
ρ(t) are computed in parallel. The operations are left or right
shifts depending on the sign of ρ(t). A multiplexer chooses
the value of expression 2−ρ(t)temp1 based on the computed
value of ρ(t). The selected output vector of the multiplexer
is added to 1 and shifted to the right. The final stage is the

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 7

Negate
-Uz(t)

Uz(t)

2sz(t) ≥ sz(t)?
~

sz(t)
~

sz(t)

<< νMIN+ D - Ω

<< νMIN+ 1 + D - Ω

<< 2

>> 2

>> νMAX- 1 + D - Ω

>> νMAX+ D - Ω

...

...

+

 1

clip+Wz(t) Wz(t+1)

ρ(t) - (D - Ω)

>> 1

<< 1

Fig. 7: Weight update stage

update operation of weight vector Wz(t+ 1) computed by the
sum of the weight vector Wz(t) and the weight update factor
∆Wz(t).

8) Weight store: The weight store keeps the weight vectors
in between operations of weight vector updating for band z
and reading the weights of the same band for the next sample.
A dual port block RAM is used to read a weight vector from
one address and simultaneously write the weights at another
address. The band z of the incoming sample is used as an
address to read the corresponding weights from the weight
store. When updating weights, the coordinate z of the new
weight vector is used as a write address.

W0(t+1) W1(t+1) W2(t+1) W3(t) WN+2(t)

0

WN+1(t)

zinzupdate

1 2 3 ... N+1 N+2

N

WNz-1(t)WNz-2(t)WN+3(t)

N+3 Nz-2 Nz-1

Fig. 8: Weight store data ordering

Control
tick

Dot product
Local sum and

differences
calculation

Read
weight Prediction Write

weight

2 S 2 31

Clock
Cycle

Weight updateWeight
delay

Fig. 9: Time diagram of weight updating and storing pipeline

Fig. 8 illustrates situation when weight vector Wzin(t) in
band zin is read and the weight vector Wzupdate

(t+1) in band

zupdate is updated. The relation between the band zupdate and
the band zin of the currently processed sample is given as:

zupdate = (zin −N) mod Nz (30)

where N = 1 + 2 + S + 2 + 3 is a delay which equals to the
number of pipeline stages from reading operation in weight
store to the final stage of weight update operation. The value
of N depends on the number of stages S in tree adder of
the dot product module. The time diagram of the described
pipeline in Fig. 9 shows that read operation of a weight vector
is performed in parallel with the local sum and difference
computations. The weight vector from the block RAM is
delayed by two cycles, such that the local difference vector
and weight vector for the same sample arrive simultaneously
at the dot product module.

9) Residual mapping: The residual mapping is computed
in two-pipeline stages as presented in Fig. 10. The first stage
computes ∆z(t) and θz(t) from Eq. (17). The mapped

sz(t)
~

sz(t)
|Δz(t)| + ᶊz(t)+sz(t) - sz(t) abs

sz(t) + 2D-1

>> 1

2D-1-1-sz(t)
min

2|Δz(t)| - 1

2|Δz(t)|<< 1

-
1

δz(t)

sz(t)

|Δz(t)|

ᶊz(t)

^ ^

Δz(t)

Fig. 10: Implementation of residual mapping stage

prediction residual δz(t), defined in Eq. (16) is computed then
by using a multiplexer to select between three cases. The in-
equality 0 ≤ (−1)s̃z(t)∆z(t) ≤ θz(t) holds in one of the cases.
The expression (−1)s̃z(t) is equivalent to 1 when s̃z(t) is even,
and −1 when s̃z(t) is odd. Then, the re-stated inequality given
as s̃z(t) is even and ∆z ≥ 0 or s̃z(t) is odd and ∆z(t) ≤ 0

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 8

Read Σz(t)

Γ(t)21 ≤ rhs?

Γ(t)22 ≤ rhs?

Γ(t)2D-2 ≤ rhs?

2Γ(t) > rhs?

‘1’ & δz(t)[kz-1:0] & ‘0...0’

‘01’ & δz(t)[kz-1:0] & ‘0...0’

‘001’ & δz(t)[kz-1:0] & ‘0...0’

‘0...01’ & δz(t)[kz-1:0] & ‘0...0’

. . .

Compute
49Γ(t)/27

Compute and
store Σz(t+1)

Compute and
store Γ(t+1) if

z=NZ-1

. . .

Γ(t)
rhs uz

Select
number of

bits

kz+UMAX

kz + UMAX-1

kz + 1

kz + 2

. . .

δz(t)[kz-1:0] & ‘0...0’

Select kz, uz
and mapped

residual
truncated to

kz bits

kz

δz(t)

‘0..0’ & δz(t)

UMAX+D

D

Select code
word

δz(t)

Read Γ
(t)

Fig. 11: Overview of sample adaptive encoder implementation

is implemented in hardware as checking whether the LSB of
s̃z(t) is 0 or 1.

10) Encoding: The sample adaptive encoder implementa-
tion with five-stage pipeline is shown in Fig. 11. The first and
second stages compute the right hand side (rhs) of Ineq. (24).
In the third stage, each of the inequalities for i = 1, . . . , D−2
are evaluated in parallel. Then, parameters kz and uz are
chosen based on the results from inequality evaluation by using
priority encoder. The highest integer i, for which the inequality
with left hand side Γ(t)2i holds, is chosen as the value for kz ,
whereas expression δz(t)/2i for chosen i is assigned to uz(t).
In addition, a truncated version of δz(t) with the kz least
significant bits is created. The bits are right-shifted so that
the most significant bits are taken from the truncated δz(t). In
the last stage, the code word is generated based on the defined
rules determined by values of Umax, uz(t) and position t. Both
code word and its length are output of the encoding stage.

11) Bit packing: The bit packing module collects variable-
length encoded words into packets of a given configurable
output word size B. The packing operation is centered around
two registers of the size B. The registers alternate between
being the current register and next register. Incoming words
from the encoder are stored in the current register. When the
current register is full, leftover bits are put in the next register,
and the data from the current register are sent to the output.
In the following cycle, the registers switch roles. Due to the
variable length of the incoming code words, the bit position

in the current register for storing an incoming word can be
any value ranging from the most significant bit N − 1 to the
least significant bit 0. Creation of N different candidates for
register layout is done by creating words which consist of the
i most significant bits of the current register followed by the
(Umax + D)-bit padded input word for each i ∈ [0, N − 1].
Selection of the correct candidate is performed by using a
write pointer which keeps track of the first non-occupied bit
position in the current register. Fig. 12 illustrates an example
of the packing process. The left-most register is assigned to
be the current register, and the incoming words in the first
4 cycles are stored into this register. The fifth word is larger
than the remaining space in the current register, so the leftover
bits are stored as the most significant bits of the next register.
In the next clock cycle, the content of the current register is
written to the output FIFO, and the next and current registers
swap roles. The next input words are written to the newly
assigned current register, until it gets full in the eighth cycle.

IV. RESULTS

The factors affecting computational complexity and timing
of hardware implementation of CCSDS-123 algorithm are
size of the image to be compressed and the configuration
parameters, in particular number of bands P for prediction
and the sample ordering. The proposed architecture of the
CCSDS-123 algorithm is described by the VHDL language,

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 9

Output

Output

Variable-length words from encoder

write pointer

Current Next

CurrentNext

1 2 3 4 5 7 86
Clock
cycle

2

5

6

8

...

...

Clock
cycle

write pointer

write pointer

write pointer

Fig. 12: Packing of variable length code words into fixed-size packets

Control
tick

Read
weight

Local sum and differences
calculation Dot product

Weight delay

Prediction Residual mapping PackingEncoder

Weight update Write
weight

Control
tick

Read
weight

Local sum and differences
calculation Dot product

Weight delay

Prediction Residual mapping

Weight update Write
weight

PackingEncoder

Fig. 13: Timing diagram of complete CCSDS-123 pipeline in the proposed implementation

whereas the Vivado tool is used for synthesis, implementation,
power estimation, testing and verification of the proposed
implementation on a Zedboard development board with a
Zynq-7020 FPGA. The proposed hardware implementation
supports the majority of the parameter settings defined by
the compression standard, including full ranges of bit-depths,
number of previous bands for prediction P and output word
size B. The proposed hardware implementation supports both
on the fly processing of one input sample per clock cycle and
offline processing from the external memory. For on the fly
processing, Nz must be larger than number of stages N to
avoid data corruption. This is due to the fact that the sample
sz(t + 1) arrives Nz clock cycles after sz(t), and it takes N
clock cycles from sz(t) arrives until the weight for sz(t+ 1)
is stored. The block-adaptive entropy encoding and custom
initialization of weight vectors are not supported. The chosen
scanning order is BIP based on the memory requirement
analysis performed in the previous section. Fig. 13 shows

the complete pipeline of the proposed implementation. It is
observed that the processing chain after a sample is input until
the code word is generated takes 15 clock cycles. The packing
stage takes a variable number of clock cycles depending on
the size of encoded words and output word size B.

A. Logic Utilization Results

Table IV shows the default values of the CCSDS-123
parameters used in performance and logic utilization analysis.
The cube sizes of multispectral and hyperspectral imagers
- Moderate Resolution Imaging Spectroradiometer (MODIS)
[19], Hyperion [20], Airborne Visible Infra-Red Imaging Spec-
trometer (AVIRIS) [21] and Hyperspectral Imager for the
Coastal Ocean (HICO) [22] and their total resource utilization
in terms of LUTs, registers, BRAM and DSP blocks of
the proposed CCSDS-123 implementation are presented in
Table V.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 10

TABLE IV: Default CCSDS-123 parameters used in logic
utilization analysis

Parameter Description Value

D Sample bit resolution 16
P Number of previous bands to use in prediction 3
Ω Weight resolution (weight bit resolution is Ω + 3) 19
νmin Weight update scaling exponent initial parameter −1
νmax Weight update scaling exponent final parameter 3
tinc Weight update scaling exponent change interval 26

R Register size 64

Umax Unary length limit 18
γ0 Initial count exponent 1
γ∗ Re-scaling counter size 6
K Accumulator initialization constant 3

Detailed block-level resource utilization for the HICO cube
size is further elaborated. The area resources are dependent
on a number of parameters. In particular, the number of bands
used for prediction P defined within the range [0, 15] can
significantly affect the area utilization. The area utilization
in terms of LUTs and registers for the modules dot product,
predictor and weight update dependent on parameter P are
shown in Table VI and Table VII, respectively. Both the num-
ber of LUTs and the number of registers scale linearly with
P as illustrated in Fig. 14 and Fig. 15. The LUTs and register
resources used in other modules which are not dependent on
P are presented in Table VIII. For the default value of P = 3,
2952 LUTs and 2469 registers are used corresponding to 5.5%
and 2.3% utilization on a Zynq-7020 FPGA, respectively.
Block RAM utilization is shown in Fig. 16, for different values
of P . For P = 3, 36 block RAMs are used corresponding to
26% of available block RAM of a Zynq-7020 FPGA. The area
utilization in terms of LUTs and registers for various bit-depth
D are also presented in Table IX and Table X, respectively.

0 3 6 9 12 15
0

1,000

2,000

3,000

4,000

5,000

6,000

P

L
U

T
s

Total
Dot product

Predictor
Weight update

Fig. 14: LUT utilization for different values of P

The estimated maximum operating frequency for HICO
size images is approximately 147 MHz, where the top ten
critical paths of the design are in the first pipeline stage of the
local sum computation. The pipeline implementation allows
on the fly processing of one sample per clock cycle, achiev-
ing a throughput of 147 Msample/s. The power estimation
performed in Vivado tool using default parameters and HICO
cube size is 0.295 W.

0 3 6 9 12 15
0

1,000

2,000

3,000

4,000

5,000

6,000

P

R
eg

is
te

rs

Total
Dot product

Predictor
Weight update

Fig. 15: Register utilization for different values of P

0 3 6 9 12 15
30

32

34

36

38

P
B

lo
ck

R
A

M
s

Fig. 16: Block RAM utilization for different number of pre-
vious bands P

B. Verification

Testing of the complete core was initially performed in sim-
ulations against the Emporda compressor [23] for a selection
of parameters and for a number of edge cases with cubes in all
three dimensions restricted to less than 100 elements to reduce
simulation time. The core was tested on a set of special test
pattern images produced by CCSDS for verifying that certain
edge cases with overflows are handled correctly.

An automated verification system is also created comparing
the compressed bitstream from the implemented design with
the compressed bitstream from the Emporda software [23].
The proposed verification flow shown in Fig. 17 allows the
design to be automatically checked for different sets of generic
parameters yielding greater confidence in the robustness of the
design.

The last verification stage for assessment of processing
performance and cross-testing of the proposed FPGA imple-
mentation with Emporda reference software uses well-known
hyperspectral datasets collected by imagers listed in Table V.
The core was also tested on a ZedBoard development board by
loading these cubes in BIP ordering into the external memory
and by using Xilinx AXI DMA core [24] for streaming
data to the proposed accelerator. The resulting bitstream was
successfully compared to the expected compressed image
bitstream.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 11

TABLE V: Resource utilization for various multispectral and hyperspectral imagers

Imagers D Nx Ny Nz LUTs Registers BRAM DSP fmax

MODIS 12 1354 2030 17 2414 2303 14 7 154
Hyperion 12 256 3242 242 2457 2303 28 7 147
AVIRIS 16 680 512 224 3012 2528 84 6 147
HICO 16 512 2000 224 2952 2469 36 6 147

TABLE VI: LUT utilization for different number of previous
bands P

P Dot prod. Predictor Weight upd. Total

0 111 344 310 2258
3 270 531 617 2952
6 420 741 964 3716
9 567 950 1297 4426

12 712 1157 1621 5123
15 909 1364 1945 5872

TABLE VII: Register utilization for different number of pre-
vious bands P

P Dot prod. Predictor Weight upd. Total

0 133 121 412 1686
3 272 228 807 2469
6 501 288 1206 3280
9 583 347 1612 3950

12 721 404 2011 4667
15 862 461 2410 5387

Python script
(gen_sim_ref.py)

CCSDS123 parameter
file (JSON)

Comparison

Emporda

Verilog include
file

Emporda
configuration file

Compilation,
elaboration, simulation

Test bench

Expected
bitstreamActual bitstream

Input image

Fig. 17: Overview of automatic verification of the proposed
design

C. Comparison

The proposed CCSDS-123 implementation is compared
with recent state of the art FGPA implementations [14]–
[18] as presented in Table XI. The sensor maximum data
rates for AVIRIS, AVIRIS NG and HICO imagers are listed
representing real-time constraint for data processing. The lack
of implementation details of various stages in state of the art
works limits the comparison to the maximum frequency, the
throughput performance, power and to ability to perform on-
the-fly compression by streaming one sample per clock cycle
directly from the sensor without use of external memory. The
data dependencies in BSQ ordering limits significantly the
throughput in hardware implementation, whereas BIP ordering
provides theoretical throughput of one compressed sample per
clock cycle.

In HyLoC implementation [15], the maximum throughput
depends on the selected configuration parameters. Parameter P
affects the number of cycles per sample processing. The maxi-
mum operating frequency varies between 43.0 - 43.9 MHz for
RTAX1000S FPGA, achieving throughput of 1.75 MSamples/s
and 3.5 MSamples/s for P = 15 and P = 3, respectively. On
Virtex-5 FPGA, the achieved throughput is 11.3 MSamples/s
for P = 3. The advantage of this implementation is removal of
internal storage requirements for neighboring samples for BSQ
ordering. Instead of storing intermediate results, the data are
re-calculated for each input sample requiring also neighboring
samples to be fetched from the external memory. In this
manner, the irregular data access patterns are introduced in
communication with external memory.

SHyLoC implementation [16] consists of two IP cores - the
CCSDS-121 and the CCSDS-123 supporting all three com-
pression orderings. There is a need for different architectures
of the CCSDS-123 standard for each ordering. The design is
optimized for default value of P. The achieved throughput is
higher in BIP than in other two orderings. The implementation
requires the use of external memory.

The approach in [18] provides both the use of external
memory as a buffer for storing data cube and on-the-fly data
streaming directly from the sensor. The achieved throughput
for Virtex-4 and Virtex-7 FPGAs are 23 MSamples/s and
48 MSamples/s, respectively. FPGA implementation proposed
in [17] achieves throughput of 110 MSamples/s on Virtex-5
FPGA, streaming both current sample to process and its N
and NW neighbors from the external memory. This disables
further improvements which can be introduced by parallel im-
plementation due to limited I/O capabilities of the supporting
system.

The proposed implementation achieves throughput of 147
MSamples/s, with negligible initial latency of 15 clock cycles,

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 12

TABLE VIII: LUT and register utilization for modules independent of P

Sample delay Local Diff Diff. store Control Weight store Res. mapping Encoder Packer

LUTs

209 167 3 115 2 99 577 365

Registers

122 337 57 47 132 71 250 146

TABLE IX: LUT utilization for different sample widths D

D Dot prod. Prediction Weight upd. Coder Total

8 77 337 476 281 1892
10 83 414 513 355 2184
12 89 457 549 423 2439
16 270 531 617 577 2952

TABLE X: Register utilization for different sample widths D

D Dot prod. Prediction Weight upd. Coder Total

8 74 139 682 168 1758
10 76 162 707 193 2143
12 82 184 755 213 2285
16 272 228 807 250 2469

after which the data is output after bit packing stage in B-
byte words. On-the-fly compression of data streamed in BIP
ordering directly from the sensor is supported. Processing
of data stored in external memory in the BIP ordering is
also supported by the use of AXI DMA core. The improved
performance is achieved at the expense of increased BRAM
utilization compared to [15]. However, the BRAM utilization
corresponding to 1.327 Mbits occupies only 26% of the
available resources on Zynq-7020 FPGA for D = 16 and
P = 3.

V. CONCLUSION

In this paper an efficient FPGA implementation of the
CCSDS-123 compression algorithm with BIP ordering is pre-
sented. The complete pipeline processing one input sample
per clock cycle is described in detail and efficient hardware
solutions are presented for a number of stages in the algorithm.
The implementation is tested against available reference soft-
ware and it is fully compliant with standard allowing user-
defined parameter adjustments. The achieved throughput is
147 MSamples/s for 16-bit samples, which represents better
performance than the proposed state of the art implementa-
tions.

ACKNOWLEDGEMENT

This work was supported by the Research Council of
Norway (RCN) through the MASSIVE project, grant number
270959, and the AMOS project, grant number 223254, as well
as by the Norwegian Space Center.

REFERENCES

[1] F. Sigernes, M. Syrjäsuo, R. Storvold, J. Fortuna, M. E. Grøtte, and T. A.
Johansen, “Do it yourself hyperspectral imager for handheld to airborne
operations,” Optics express, vol. 26, no. 5, pp. 6021–6035, 2018.

[2] S. Lopez, T. Vladimirova, C. Gonzalez, J. Resano, D. Mozos, and
A. Plaza, “The promise of reconfigurable computing for hyperspectral
imaging onboard systems: A review and trends,” Proceedings of the
IEEE, vol. 101, no. 3, pp. 698–722, 2013.

[3] A. D. George and C. M. Wilson, “Onboard processing with hybrid and
reconfigurable computing on small satellites,” Proceedings of the IEEE,
vol. 106, no. 3, pp. 458–470, 2018.

[4] C. Rodarmel and J. Shan, “Principal component analysis for hyper-
spectral image classification,” Surveying and Land Information Science,
vol. 62, no. 2, p. 115, 2002.

[5] A. Abrardo, M. Barni, and E. Magli, “Low-complexity predictive lossy
compression of hyperspectral and ultraspectral images,” in Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE International
Conference on. IEEE, 2011, pp. 797–800.

[6] L. Santos, J. F. López, R. Sarmiento, and R. Vitulli, “FPGA implemen-
tation of a lossy compression algorithm for hyperspectral images with
a high-level synthesis tool,” in Adaptive Hardware and Systems (AHS),
2013 NASA/ESA Conference on. IEEE, 2013, pp. 107–114.

[7] A. García, L. Santos, S. López, G. Callicó, J. F. López, and R. Sarmiento,
“FPGA implementation of the hyperspectral Lossy Compression for
Exomars (LCE) algorithm,” in High-Performance Computing in Remote
Sensing IV, vol. 9247. International Society for Optics and Photonics,
2014, p. 924705.

[8] Consultative Committee for Space Data Systems, “Lossless Multispec-
tral and Hyperspectral Image Compression - CCSDS 121.0-B-1,” 2012.

[9] N. Kranitis, I. Sideris, A. Tsigkanos, G. Theodorou, A. Paschalis,
and R. Vitulli, “Efficient field-programmable gate array implementation
of CCSDS 121.0-b-2 lossless data compression algorithm for image
compression,” Journal of Applied Remote Sensing, vol. 9, no. 1, p.
097499, 2015.

[10] Consultative Committee for Space Data Systems, “Lossless Multispec-
tral and Hyperspectral Image Compression - CCSDS 122.0-B-1,” Tech.
Rep., 2005.

[11] L. Li, G. Zhou, B. Fiethe, H. Michalik, and B. Osterloh, “Efficient
implementation of the CCSDS 122.0-B-1 compression standard on
a space-qualified field programmable gate array,” Journal of Applied
Remote Sensing, vol. 7, no. 1, p. 074595, 2013.

[12] Consultative Committee for Space Data Systems, “Lossless Multispec-
tral and Hyperspectral Image Compression - CCSDS 123.0-B-1,” Green
Book, 2015.

[13] CCSDS, “Lossless Multispectral and Hyperspectral Image Compression
- CCSDS 123.0-B-1,” Blue Book, 2012.

[14] D. Keymeulen, N. Aranki, A. Bakhshi, H. Luong, C. Sarture, and
D. Dolman, “Airborne demonstration of FPGA implementation of Fast
Lossless hyperspectral data compression system,” in Adaptive Hardware
and Systems (AHS), 2014 NASA/ESA Conference on. IEEE, 2014, pp.
278–284.

[15] L. Santos, L. Berrojo, J. Moreno, J. F. López, and R. Sarmiento,
“Multispectral and hyperspectral lossless compressor for space ap-
plications (HyLoC): A low-complexity FPGA implementation of the
CCSDS 123 standard,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 9, no. 2, pp. 757–770, 2016.

[16] University of Las Palmas de Gran Canaria. (2017) SHyLoC
IP Core. [Online]. Available: http://www.esa.int/Our_Activities/Space_
Engineering_Technology/Microelectronics/SHyLoC_IP_Core

[17] G. Theodorou, N. Kranitis, A. Tsigkanos, and A. Paschalis, “High
Performance CCSDS 123.0-B-1 Multispectral & Hyperspectral Image
Compression Implementation on a Space-Grade SRAM FPGA,” in

http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 13

TABLE XI: Performance comparison of CCSDS-123 implementations

Implementation Order P D Platform fmax Throughput Throughput Power On-the-fly
[MHz] [Msamples/s] [Mb/s] [mW] support

UAB Emporda [23] All 15 16 Software(i-7 7500U) - 4.928 [18] 78 - No
AVIRIS Classic [21] - - 12 Sensor Maximum - 1.7 20.4 - -
AVIRIS-NG [21] - - 16 Sensor Maximum - 1.92 30.72 - -
HICO [25] - - 16 Sensor Maximum - 4.78 76.5 - -
Keymeulen et al [14] BIP 3 13 Virtex-5 40 40 520 - Yes
HyLoC, Santos et al [15] BSQ 3 16 Virtex-4 134 11.2 179 1488 No
SHyLoC, Santos et al [16] All 15 16 Virtex5 140 140 2240 - Yes
Theodorou et al [17] BIP 3 16 Virtex-5 110 110 1790 - No
Bascones et al [18] BIP 15 16 Virtex-4 50 23.3 379 450 Yes
Bascones et al [18] BIP 15 16 Virtex-7 50 47.6 760 450 Yes
Proposed work BIP 15 16 Zynq-7020 147 147 2350 295 Yes

Proceedings of the 5th International Workshop on On-Board Payload
Data Compression, Frascati, Italy, 2016, pp. 28–29.

[18] D. Báscones, C. González, and D. Mozos, “FPGA Implementation of the
CCSDS 1.2.3 Standard for Real-Time Hyperspectral Lossless Compres-
sion,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 2017.

[19] NASA. Moderate Resolution Imaging Spectroradiometer (MODIS).
[Online]. Available: https://modis.gsfc.nasa.gov/

[20] USGS. Hyperion - USGS EO-1. [Online]. Available: https:
//eo1.usgs.gov/sensors/hyperion

[21] NASA. Airborne Visible InfraRed Imaging Spectrometer (AVIRIS).
[Online]. Available: https://aviris.jpl.nasa.gov/

[22] Naval Research Laboratory. Hyperspectral Imager for the Coastal
Ocean (HICO). [Online]. Available: http://hico.coas.oregonstate.edu/

[23] GICI group, Universitat Autonoma de Barcelona, “Emporda software,”
2011. [Online]. Available: http://www.gici.uab.es

[24] Xilinx, “LogiCORE IP Product Guide, AXI DMA v7.1,” Tech. Rep.,
2017.

[25] M. D. Lewis, R. Gould, R. Arnone, P. Lyon, P. Martinolich, R. Vaughan,
A. Lawson, T. Scardino, W. Hou, W. Snyder et al., “The Hyperspectral
Imager for the Coastal Ocean (HICO): Sensor and data processing
overview,” in OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for
Our Future: Global and Local Challenges. IEEE, 2009, pp. 1–9.

Johan Fjeldtvedt received the B.Sc. degree in math-
ematics at The Norwegian University of Science and
Technology (NTNU) in 2014. He is now working
toward the M.Sc. degree in Electronics at NTNU.
His research interest is high efficiency streaming and
compression related to hyperspectral image process-
ing.

Milica Orlandić received the B.Sc. and M.Sc. de-
grees in electrical engineering from University of
Montenegro in 2007 and 2009. She received the
Ph.D. degree from Norwegian University of Science
and Technology (NTNU) in 2015 in electronics.
She is currently holding a position of Postdoctoral
Research Associate at NTNU. Her research interests
include digital hardware design of video and image
processing algorithms, hyperspectral imaging pro-
cessing in satellite applications and reconfigurable
systems on FPGA.

Tor Arne Johansen received the M.Sc. and Ph.D.
degrees in electrical and computer engineering from
the Norwegian University of Science and Tech-
nology (NTNU), Trondheim, Norway, in 1989 and
1994, respectively. From 1995 to 1997, he was with
SINTEF, Trondheim, Norway, as a Researcher. He
was an Associate Professor at NTNU in 1997 and
a Professor in 2001. In 2002, he co-founded the
company Marine Cybernetics AS, where he was a
Vice President until 2008. He is currently a Principal
Researcher with the Center of Excellence on Au-

tonomous Marine Operations and Systems, and the Director of the Unmanned
Aerial Vehicle Laboratory at NTNU. He has authored several articles in the
areas of control, estimation, and optimization with applications in the marine,
automotive, biomedical, and process industries.

Prof. Johansen was a recipient of the 2006 Arch T. Colwell Merit Award
of the SAE.

https://modis.gsfc.nasa.gov/
https://eo1.usgs.gov/sensors/hyperion
https://eo1.usgs.gov/sensors/hyperion
https://aviris.jpl.nasa.gov/
http://hico.coas.oregonstate.edu/
http://www.gici.uab.es

	Introduction
	Background
	Prediction stage
	Local sum and differences
	Prediction
	Weight update
	Residual mapping

	Entropy Encoding

	Proposed CCSDS-123 Encoder Implementation
	Memory Requirements
	Neighboring samples
	Weight vectors and accumulators
	Previous local differences

	Data Dependencies
	Architecture overview
	Sample delay
	Control signal generation
	Local sum and difference computation
	Central difference store
	Dot product
	Predictor
	Weight update
	Weight store
	Residual mapping
	Encoding
	Bit packing

	Results
	Logic Utilization Results
	Verification
	Comparison

	Conclusion
	References
	Biographies
	Johan Fjeldtvedt
	Milica Orlandic
	Tor Arne Johansen

